
S E C U R I T Y A N A LY S I S O F T H E X I A O M I I O T E C O S Y S T E M

dennis giese

Master Thesis

July 10, 2019

Secure Mobile Networking Lab
Department of Computer Science

Security Analysis of the Xiaomi IoT Ecosystem
Master Thesis
SEEMOO-MSC-0142

Submitted by Dennis Giese
Date of submission: July 10, 2019

Advisor: Prof. Dr.-Ing. Matthias Hollick
Supervisor: Jiska Classen and Prof. Guevara Noubir

Technische Universität Darmstadt
Department of Computer Science
Secure Mobile Networking Lab

A B S T R A C T

Internet of Things (IoT) devices are gaining more and more importance in our daily
lives. Through their deep integration they pose a potential risk for the user’s privacy. In
this thesis, I use reverse engineering methods to analyze the security of the Xioami IoT
ecosystem and its devices. I implement a tool to emulate the Xiaomi cloud and analyze
the cloud protocol. I use different, some unconventional, methods to extract the device
firmware and get privileged access on the devices. The evaluation shows that, even
though Xiaomi is a large IoT company, their cloud protocol and Software Development
Kit (SDK) have serious flaws. Also, the actual vendors of the devices do not put much
effort into device security. A slightly positive aspect of this is the fact that users can use
the flaws to get full control over their own devices.

Z U S A M M E N FA S S U N G

IoT Geräte gewinnen mehr und mehr an Bedeutung in unserem täglichen Leben. Durch
ihre tiefe Integration stellen sie für die Privatsphäre des Benutzers ein potentielles Risiko
dar. In dieser Thesis untersuche ich mit Hilfe von "reverse engineering"die Sicherheit des
Xiaomi IoT Ökosystems. Dazu habe ich eine Software entwickelt, die die Xiaomi Cloud
emuliert und mir so die Analyse des Cloud Protokolls ermöglicht. Ich have verschiede-
ne, teils unkonventionelle, Verfahren verwendet um die Firmware aus den Geräten zu
extrahieren und um dann priviligierten Zugriff auf diese zu bekommen. Die Evaluation
meiner Analyse zeigt, dass Xiaomi, obwohl es ein großes und bekanntes Unternehmen
im Bereich IoT ist, schwerwiegende Schwachstellen in ihrem Cloud Protokoll und ihrem
SDK aufweist. Dazu kommt noch, dass die eigentlichen Hersteller der Geräte nicht viel
Aufwand in die Absicherung dieser investieren. Ein positiver Aspekt ist jedoch, dass
Benutzer diese Schwachstellen ausnutzen können, um die Kontrolle über ihre eigenen
Geräte zu erhalten.

iii

A C K N O W L E D G M E N T S

I would like to thank Prof. Guevara Noubir and Jiska Classen for giving
helpful advice while writing this thesis. Additionally, I am thankful to
Daniel Wegemer for his support in the reverse-engineering of devices.

I am especially grateful to Prof. Matthias Hollick for his patience and advice.

I would like to thank Tristan Honscheid, Zachary Holbrook, Josef Biberstein,
Marc Studlek and Sashank Narain for proofreading my thesis.

v

C O N T E N T S

i introduction 1

1 introduction 3

1.1 Motivation: IoT in our daily life . 3

1.2 Universal definition for IoT . 3

1.3 Security incidents . 4

1.4 Privacy concerns . 5

1.5 IoT devices as Embedded devices . 5

1.6 Requirements for a secure IoT system . 7

1.7 Secure devices vs. user control . 9

1.8 Focus on Xiaomi . 9

1.9 Scope of this Thesis . 10

2 related work 13

ii contributions 17

3 xiaomi ecosystem 19

3.1 Approach . 19

3.2 Structure . 20

3.3 Device API . 22

3.4 App to Cloud API . 25

3.5 Interception of cloud traffic: Dustcloud . 26

3.6 Devices . 27

4 reverse engineering methods 29

4.1 Network . 29

4.2 Hardware . 30

4.3 Software . 33

4.4 Summary of tools . 34

5 evaluation of devices 35

5.1 Comparison guideline . 35

5.1.1 Hardware . 35

5.1.2 Firmware security . 35

5.1.3 Network . 35

5.1.4 Data . 36

5.2 Device analysis . 36

5.2.1 Xiaomi Mi Robot Vacuum Cleaner Gen1 36

5.2.2 Roborock Vacuum Cleaner S50 . 45

5.2.3 Roborock Vacuum Cleaner S6/T6 47

5.2.4 Lumi Smart Home Gateway . 52

5.2.5 Yeelight LED Strip . 57

5.2.6 Yeelight Smart Light bulbs . 59

5.2.7 Lumi Aqara Gateway Camera . 60

5.3 Analysis results . 62

5.4 Possible Attacks . 62

vii

viii contents

iii discussion and conclusions 65

6 discussion 67

6.1 The Used Approaches for Reverse Engineering 67

6.2 Security of the Xiaomi Ecosystem . 68

6.3 Possibility of custom firmware . 69

6.4 Future work . 70

7 conclusions 71

bibliography 73

L I S T O F F I G U R E S

Figure 1 Overview of components of an IoT/embedded device 6

Figure 2 Simplified communication relations in the Mijia ecosystem 21

Figure 3 Detailed overview of components for the device communication 25

Figure 4 Example network setup to monitor IoT device traffic 30

Figure 5 Accessing the UART pins through venting holes in the case . . . 31

Figure 6 Disassembled Mi Robot Vacuum Cleaner 37

Figure 7 Front side of the mainboard Printed Circuit Board (PCB) for the
Mi Robot Vacuum Cleaner . 38

Figure 8 Reverse Engineered Pinout of the R16 SOC in the Mi Robot Vac-
uum Cleaner . 40

Figure 9 Sideview of the R16 SOC with dimensions from the R16 Datasheet [40] 41

Figure 10 Screenshot of IDA Pro inspecting the Strings of the SysUpdate
binary . 43

Figure 11 Method of soldering the UART pins on Mi Robot Vacuum Cleaner 44

Figure 12 Stored map (scaled) on Mi Robot Vacuum Cleaner 46

Figure 13 Disassembled Roborock Vacuum Cleaner S50 48

Figure 14 Front side of the mainboard PCB for Roborock Vacuum Cleaner
S50 . 49

Figure 15 Setup of T6 Mainboard for Universal Asynchronous Receiver Trans-
mitter (UART) connection . 50

Figure 16 Front side of the PCB in Lumi Smart Home Gateway 54

Figure 17 Partition information extracted from SPI flash of Lumi Smart
Home Gateway . 55

Figure 18 Debug pins on PCB in Lumi Smart Home Gateway 56

Figure 19 Placeholders for device credentials in firmware of Lumi Smart
Home Gateway . 57

Figure 20 Matched functions between SDK libraries and unknown func-
tions in firmware of Lumi Smart Home Gateway 58

Figure 21 Front side of the PCB in disassembled Yeelight LED Strip 59

Figure 22 Disassembled Yeelight Smart Lightbulb 60

Figure 23 Disassembled Aqara Gateway Camera with Back-(left) and Frontside
PCB (right) . 61

L I S T O F TA B L E S

Table 1 Stored configuration settings for Mijia devices 22

Table 2 miIO protocol structure . 23

Table 3 Mijia devices supported by region 27

ix

Table 4 Overview over Mijia devices to be tested 28

Table 5 Overview over prepared tools for reverse engineering 34

Table 6 eMMC partition layout for Mi Robot Vacuum Cleaner 41

Table 7 Responsible processes running on Mi Robot Vacuum Cleaner . . 42

Table 8 Responsible processes running on Roborock T6 Vacuum Cleaner 50

Table 9 Reverse engineered format of Marvel 88MW30x firmware binaries 53

Table 10 Partitions on SPI flash of Aqara Gateway camera 62

Table 11 Hardware details of the analyzed devices 63

Table 12 Security details of the analyzed devices 64

L I S T I N G S

Listing 1 Example of a device entry of supported devices 19

Listing 2 Example of a message from the device to the cloud 23

Listing 3 Example of cloud command for installing an App firmware update 24

Listing 4 Example of cloud command for installing an MCU firmware update 24

Listing 5 Excerpt of a cloud response of the user’s device list 26

Listing 6 Half of the obfuscated public key in AppProxy 51

x

A C R O N Y M S

ADB Android Debug Bridge

API Application Programming Interface

AWS Amazon Web Services

BGA Ball Grid Array

BLE Bluetooth Low Energy

BSI German Federal Office for Information Security

CBC Cipher Block Chaining

CDN Content Delivery Network

DID Device ID

DKEY Device Key

DNS Domain Name System

ECC Error-Correcting Code

EMI Electromagnetic Interference

eMMC Embedded Multimedia Card

FACT Firmware Analysis and Comparison Tool

FDS Xiaomi File Storage Service

GPIO General-Purpose Input/Output

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IoT Internet of Things

ISP In-System Programming

IV Initialization Vector

JSON JavaScript Object Notation

JTAG Joint Test Action Group

xi

xii acronyms

LIDAR light detection and ranging

MAC Medium Access Control

MCU Microcontroller Unit

MITM Man-in-the-middle

NDA Non-Disclosure Agreement

NIST US National Institute of Standards and Technology

NTP Network Time Protocol

ODM Original Design Manufacturer

OEM Original Equipment Manufacturer

OS Operating System

OTA over-the-air

OTP One-Time-Programmable

OWASP Open Web Application Security Project

PCB Printed Circuit Board

RPC Remote Procedure Call

RTOS Real-Time Operating System

RTSP Real-Time Streaming Protocol

SD Secure Digital

SDIO Secure Digital Input Output

SDK Software Development Kit

SOC System-on-a-Chip

SOHO Small Office / Home Office

SOP Small Outline Package

SPI Serial Peripheral Interface

SSH Secure SHell

SWD Serial Wire Debug

TLS Transport Layer Security

TSOP Thin Small Outline Package

UART Universal Asynchronous Receiver Transmitter

URL Uniform Resource Locator

acronyms xiii

USB Universal Serial Bus

WLAN Wireless Local Area Networking

Part I

I N T R O D U C T I O N

The first chapter of this part gives an introduction and a motivation to this
thesis. This is followed in the second chapter by a presentation of related
work found in the area of IoT device security.

1
I N T R O D U C T I O N

In this chapter, I will offer an introduction to the term Internet of Things (IoT) and
embedded devices in general. I will discuss several security incidents involving IoT
devices and provide recommendations for securing such systems. Next, I will introduce
Xiaomi, a large IoT ecosystem vendor. Finally, I present the scope of this thesis.

1.1 motivation : iot in our daily life

IoT devices are gaining more and more impact on our daily lives. For example, most
consumer electronics like TVs, fridges, washing machines, smart speakers, surveillance
cameras and even toothbrushes are equipped with some kind of smart functionality and
Internet connectivity. A 2017 study by Consumer Technology Association (CTA) [10] es-
timated that there were at least 273 million IoT devices installed in US households at
that time (excluding smartphones and wearable electronics).

Smart devices are also prevalent in new buildings. The lighting, heating and security
systems of buildings of all sizes, from commercial high rises to small residential build-
ings, are often regulated by smart devices. There are a variety of different technologies,
protocols and vendors for building automation. These building automation systems re-
main installed for extended periods of time, possibly forever, without being replaced or
even updated.

Internet connectivity is gaining more importance in Industrial automation. In times
of real-time production and tight supply management requirements, IoT in industrial
settings is hailed as the answer to these challenges. These systems are often regarded as
Industry 4.0 –the fourth Industrial Revolution [25].

To be able to plan and control the usage of the power grids and other infrastructure,
there is a worldwide movement to deploy smart devices. In the US, over 72 million
smart electricity meters were installed by December 2016 alone [12]. Most of these de-
vices have to communicate back to the electricity providers.

One of the challenges of IoT is the wide fragmentation of ecosystems due to different
chip vendors, ecosystems operators, and integrators [8]. This leads to a multitude of
problems, including a lack of interoperability and security vulnerabilities. Challenges
like this make this topic interesting for security researchers.

1.2 universal definition for iot

There is no universally-accepted definition IoT and, in turn, which devices and systems
fall under the term "IoT" and which do not. In many publications, smartphones are in-

3

4 introduction

cluded under the IoT umbrella, as they connect to the Internet and contain sensors and
actuators. As the topic of IoT is regarded as new, national standardization authorities
have only recently begun publishing definitions and technical documents addressing,
for instance, security considerations or trust issues.

A comprehensive definition from the International Telecommunications Union (ITU)
can be found in its July 2012 approved Recommendation ITU-T Y.2060, Overview of the
Internet of Things, which defines IoT as "a global infrastructure for the Information
Society, enabling advanced services by interconnecting (physical and virtual) things
based on, existing and evolving, interoperable information and communication tech-
nologies" [31].
The US National Institute of Standards and Technology (NIST) writes in their 2016 Spe-
cial Publication (SP) [58] that IoT devices, in general, are systems that involve computa-
tion, sensing, communication, and actuation. They form a connection between humans,
non-human physical objects, and cyber objects, enabling monitoring, automation, and
decision making. This definition is very open and enables us to dynamically decide if
something belongs to IoT depending on a particular behavior.

The German Federal Office for Information Security (BSI), in their 2016 drafted secu-
rity recommendation [48] defines IoT as systems, which have, in contrast to classical
IT systems, additional smart functionality. These devices often have Internet access and
can communicate over different media, e.g. wirelessly. The definition of the BSI is also
very open and encompassing. Especially the transition line to industrial control systems
(ICS) or traditional embedded systems is regarded as not static. The BSI regards IoT
devices as specialized embedded devices.

For this thesis, I limit the scope of my devices to those that fit the definition of the BSI
and exclude smartphones.

1.3 security incidents

Vulnerable IoT devices have led to numerous security incidents.

One of the most famous recent attacks was the "Mirai" botnet. In 2016 the Mirai mal-
ware was used to take over vulnerable IoT devices and subsequently attack multiple
websites [7]. This botnet reached its peak in December 2016 with over 600,000 active
devices at the same time. Leveraging hard-coded default passwords and open ports,
the bot scans the Internet for vulnerable devices, in particular those with open ports
23 and 2323, which are used for telnet. Its primary targets were IP cameras, routers,
and printers. Part of the vast success of Mirai was not only the insecure design of the
devices by their vendors, but also the behavior of customers, who connected the devices
directly to the Internet without firewalls. The anonymous developer of the "Carna" bot-
net, which mapped significant parts of the Internet using hacked devices in 2012 found
over 500,000 accessible printers and over 1 million accessible IP cameras [6].

1.4 privacy concerns 5

The Mirai botnet was, however, not the only malware which abused vulnerable IoT
devices. One year before Mirai, in 2015, a malware named "BASHLITE" attacked and
infected many devices [36]. It is estimated that BASHLITE infected over 1 million de-
vices. The primary attack vector of this malware was the BASH vulnerability called
"Shellshock", which was identified in September 2014.

In the preceeding cases, the owners of the infected devices frequently did not notice
that their devices had been hacked. However, there are also cases where vulnerable IoT
devices have led to severe consequences for their owners: In 2014 the "SynoLocker" mal-
ware infected many Synology Network Attached Storage (NAS) devices and encrypted
their users’ data [53]. The malware then demanded ransom to decrypt the data again.
The attack vector for the malware was a vulnerability in the firmware of the NAS and
the fact that many owners made the devices accessible from the Internet. The same
repeated in the beginning of 2019 where the malware "Cr1ptT0r" infected vulnerable
D-Link NAS devices [13].

1.4 privacy concerns

IoT devices, by their very nature, can collect much data. In the past, there have been
many cases where IoT devices have put the privacy of their users at risk.

Smart TVs, for example, can monitor the user’s behavior and can report this data to
the vendor or to advertisers [18]. This has been found in European models of Smart
TVs. In addition, these devices usually store this data locally on the device.

IP cameras have a huge impact on the privacy of the users, especially as users place
cameras in private areas like their homes or even their bedrooms. If such a camera is
improperly configured or vulnerable, unauthorized persons can watch the owner and
listen to conversations. Since 2014 the website "INSECAM"1 has scanned the Internet for
open or misconfigured cameras and made them accessible. After starting their service,
the operators of the website started to filter out private cameras. While the ethical aspect
of this website is questionable, it still demonstrates the privacy problem and the fact that
anyone can access that kind of cameras.

A particularly interesting case was published in June 2019 about second-hand Google’s
Nest cameras where the new owner could be monitored by the old owner, even though
a factory reset according to the user manual was done [9]. As Google stated, the issue
was a binding to a third-party cloud service was not correctly removed. In that case, the
old owner could access video streams, see live video and control most functions of the
camera remotely, without the new owner noticing it.

1.5 iot devices as embedded devices

IoT devices are technically a subgroup of embedded devices. Typical embedded de-
vices are everywhere around us and can be found in consumer, building, industrial,
automotive, medical, commercial and military applications. In comparison to usual
general-purpose computers, embedded devices are designed for a specific task (e.g. to
control some actuator depending on specific conditions).

1 INSECAM https://www.insecam.org/

https://www.insecam.org/

6 introduction

SoC

Sensors/
Actors

Storage

Firmware

Connectvity

Debug
Interfaces

WiFi

BT

Zigbee

UART

eMMC Flash

NAND Flash

SPI Flash

JTAG/SWD

SD Cards

OS

Application

WiFi/Zigbee

USB

Memory

DDR-Ram

On-Chip
Memory

SRAM

Figure 1: Overview of components of an IoT/embedded device

Figure 1 shows the typical components of embedded and IoT devices. The central
component is the System-on-a-Chip (SOC). This SOC can come in different flavors and
architectures.

Typical architectures for embedded systems are ARM, MIPS, Xtensa, PIC and Atmel
AVR. The choice of a particular architecture depends mostly on the use-case and the de-
veloper’s experience. For example, according to the OpenWRT supported hardware list2,
the majority of home user and Small Office / Home Office (SOHO) routers are based on
MIPS. The majority of customer entertainment electronic, including most Smartphones,
is based on ARM devices. Xtensa, mostly known for the ESP8266 and ESP32, can be
found in devices like lightbulbs, switches or power plugs.

The SOC offers different interfaces: debug interfaces, storage interfaces, connectivity
interfaces, and general purpose interfaces.

Debug interfaces are for example Joint Test Action Group (JTAG), Serial Wire Debug
(SWD), Universal Asynchronous Receiver Transmitter (UART) or Universal Serial Bus
(USB).

The JTAG interface is a standardized interface for testing and debugging. Often this
interface is used to initially provision a firmware image for the SOC. SWD is a similar
interface like JTAG, however it can be only found on ARM devices. SWD requires fewer
wires than JTAG and supports ARM-specific features. Often, both interfaces share pins
and either may be selected. Due to the importance of JTAG/SWD for the production
process, it can be found on most Printed Circuit Boards (PCBs).

UART is a serial interface, which is used to print debug messages or as a command
input.

2 OpenWRT supported hardware list https://openwrt.org/toh/views/toh_available_864

https://openwrt.org/toh/views/toh_available_864

1.6 requirements for a secure iot system 7

The USB interface can play a dual role. It can be used as a General Purpose interface
for peripherals (host mode) or as a way to connect to the SOC (device mode). For debug
purposes, the device mode is used. Typical protocols which are used for the device
mode are "fastboot", "adb" or some proprietary protocols. Examples for proprietary pro-
tocols are FEL for Allwinner [16] or Maskrom mode for Rockchip [45].

The SOC offers various interfaces for non-volatile storage. For small sized storage
(<128 MByte) Serial Peripheral Interface (SPI) flash is often used. For higher amounts
of storage, raw NAND, NOR, or Embedded Multimedia Card (eMMC) flash is used,
depending on the speed and cost requirements. Also, SD cards can be used as storage.

One of the most distinguishing features of IoT devices, compared to other embedded
devices, is their connectivity to the Internet or other devices. Most common is Wireless
Local Area Networking (WLAN) or Bluetooth Low Energy (BLE) connectivity [29][42].
Some devices also offer connectivity via ZigBee [30]. Depending on the SOC, the radios
can be integrated in the chip itself or on a separate module. These modules can be con-
nected via the USB, SPI bus or even UART.

The functionality of the IoT/embedded device is provided by firmware. There are
multiple kinds of firmware that can be stored on the device. The most important is
the Operating System (OS) with the applications, but it is also common for separate
firmware images for WLAN or BLE functionality to be packaged alongside.

1.6 requirements for a secure iot system

The BSI created base requirements for IoT devices. These requirements apply not only
to the IoT device itself, but also on its operation. While the device security is the re-
sponsibility of the vendor, the actual operation is depending on the user [48]. Also, the
requirements are mainly focused on the usage of IoT in the context of companies, and
are, for example, mandatory for specific certifications. Still, the rules make sense for
private consumers. The requirements can be summarized in a few categories: update
mechanisms, authentication, network, services, and life-cycle.

It is required that devices have an update function and that vendors offer a process
for these updates. Auto-update mechanisms must be enabled and new updates must
be checked for on a regular basis, such as daily. If security patches are available, then
they must be updated immediately. It must be verified that the updates are only coming
from trustworthy sources [48][A3,A4].

The devices need to allow only authenticated access. The credentials must not be hard-
coded and default passwords must be changed. It is recommended to use certificate-
based authentication if possible [48][A2].

Regarding the network, the BSI guideline demands that the network traffic is lim-
ited to a minimum and is controlled. For example, routers and firewalls should only
allow the necessary connections and detect suspicious traffic. If possible, IoT devices
and sensors should operate in their own network segment, which is separated from
different networks [48][A5]. As for the traffic itself, it is recommended to use encryp-

8 introduction

tion [48][A10]. Administration interfaces must especially be protected. Interestingly, the
BSI recommends that companies avoid cloud-based devices.

As IoT devices might contain many services and applications, it is recommended to
check if unnecessary services or interfaces are running and disable them, if possible.
If this is not possible on the device, then it is necessary to block the services on the
router/firewall [48][A13].

For the life-cycle of IoT devices, it is demanded that a secure provisioning and decom-
missioning mechanism is provided. For example, it must be ensured that the devices
have been not manipulated before they are installed. The person responsible for the in-
stallation must be trustworthy and the steps need to be documented. The devices should
not be connected to public or insecure networks before they have been fully installed
and secured. In the case of the decommissioning, it is important to make sure that the
devices are erased and that no sensitive information remains on the devices [48][A20].

While the BSI requirements provide generic advice, additional steps can be taken for
a more secure IoT system.

In addition to the firmware update process, it might be also important to implement
downgrade prevention. Older versions of firmware tend to have vulnerabilities that are
fixed in future versions. If there is a way to initiate a downgrade of the firmware to an
old, vulnerable, version, then the vulnerability can be abused again.

For the cloud environment, the establishment of secure identities on the cloud side
and the client side is important. It needs to be ensured that the client is communicating
only to the real cloud endpoints and not to an untrusted third party. Also, it is important
for the cloud to correctly and securely identify the user and the devices. Here the risk is
that a user can spoof his/her identity and take over devices of someone else. A spoofed
device can send manipulated traffic to the cloud or even impersonate real devices.

Another helpful resource is the Open Web Application Security Project (OWASP) Em-
bedded Application Security [39]. Its focus is more on embedded devices, however,
most of the rules apply to IoT environments.

In addition to the recommendations from the BSI framework, it is required to secure
the software on the device itself. For example, OWASP recommends implementing var-
ious software protections like buffer overflow, stack overflow, and injection prevention.
Many devices receive input from untrusted sources, therefore potential vulnerabilities
need to be closed or at least contained. One option is to use a secure-by-design approach
in software development or the usage of hardening options in a particular programming
language [39][E6].

Especially for IoT, privacy plays a big role due to the usage of these devices in private
environments. Therefore it is important to limit the collection, storage, and sharing
of personally identifiable information (PII) as well as other sensitive information, like
credentials [39][E4,E9]. There are solutions available to ensure the protection of this
information, like Trusted Execution Environments (TEE), however, it is still preferred if
such information were not collected in the first place. In regard to the information it is
also important to make sure that existing sensors cannot be abused.

A traditionally huge weakness in IoT devices is the availability of debug interfaces or
backdoors. This applies to both physical debug interfaces and interfaces reachable over
the network. The most dangerous is an open telnet port with hardcoded credentials,
as seen before. There are recommendations of ensuring that no debug interfaces remain

1.7 secure devices vs . user control 9

active when the device gets deployed to the market. This can be done on a contract level
(e.g. if a contractor develops the software) and needs to be verified before a product is
mass-produced [39][E7].

As an additional security measure, the hardware can be protected against physical
attacks [32]. There are many ways to achieve this. For example, the PCB can be encased
in epoxy, which prevents probing attacks, modification of the circuits or desoldering
of components (e.g. to read out the content of flash chips). Also, the design can be
obfuscated, by removing the markings on the chip or by hiding vias inside of the PCB.
While not designed as a security feature, the usage of Ball Grid Array (BGA) packaged
chips can increase the difficulty for an attacker. For exposed applications, like doorbells,
tamper-resistant designs can be helpful to prevent leakage of data (e.g. like the WLAN
credentials of the user).

1.7 secure devices vs . user control

While secure devices are important to prevent attacks and potential leakage of user data,
it also has some disadvantages.

A device which does not allow a user to execute custom firmware and has secured
cloud interfaces is largely out of the control of the user. This means that the device is
locked to one particular vendor. This situation can be problematic if the vendor goes out
of business or decides not to support the product anymore. In 2016 this happened with
Revolv after the company was acquired by Nest [52]. The Revolv smart home hub was
left without a cloud connection and therefore became useless. Without custom firmware,
the device would no longer be functional.

As most device vendors do not offer third party or even open source Application
Programming Interface (API) connections, the user cannot decide to use an alternative
ecosystem, like open-source home automation solutions. This makes the user highly
dependent on the vendor.

For researchers, locked-down devices pose a challenge to analyze the vendors claims
in regard to privacy and security.

1.8 focus on xiaomi

The Xiaomi Corporation is a Chinese company founded in 2010. It is mostly known for
its smartphones. In 2018, the company held a market share of around 10 percent in the
smartphone market, which made them the 4th largest smartphone vendor worldwide
[21].

In addition to smartphones, Xiaomi introduced in Spring 2016 their Smart Home
IoT ecosystem, called Mijia. While most IoT accessory manufacturers have a narrow
area of focus, Xiaomi IoT ecosystem supports a broad range of device types, including
smart lightbulbs, sensors, cameras, vacuum cleaners, network speakers, electric scooters,
smart toilet seats, and even washing machines. Initially, the ecosystem was focused on
the mainland China market, where the company has a very high market penetration.
However, today, their products are sold not only in Asia, but also in Europe and North
America. The largest target market for Xiaomi after mainland China is India. The com-

10 introduction

pany claims to have the largest consumer IoT platform worldwide [3] with over 132

million connected devices in Q4 2018 [61].

Their devices might be deeply integrated with daily life and can collect a substantial
amount of personal data. However, not all devices in Xiaomi’s ecosystem are developed
by the company. Whereas Xiaomi itself designs some devices, most IoT devices were
developed by other companies and then integrated into Xiaomi’s ecosystem. This re-
sults in different quality levels for software and designs. Xiaomi itself makes heavy use
of Original Design Manufacturer (ODM) to develop products which are later branded
under the Xiaomi IoT brand.

Xiaomi offers ecosystem integration as a service for device vendors. Traditionally, Xi-
aomi invested in IoT vendors and branded the products as theirs. Also, vendors can
integrate their products into the Xiaomi ecosystem and benefit from Xiaomi’s popu-
larity and marketing. Many companies in the ecosystem sell devices under Xiaomi’s
name and therefore act as Original Equipment Manufacturers (OEMs). The usage of
ODM and OEM is not unusual in the IoT device market [19]. Xiaomi offers a Software
Development Kit (SDK) 3,4, which can be used by vendors to easily integrate their exist-
ing products into the ecosystem. This SDK supports multiple architectures and chipsets.

In November 2017, Xiaomi announced their Open IoT program at their developer con-
ference (MIDC). For this, Xiaomi provides an ESP32 based module, which takes care of
all the implementation of the Cloud API and communication [60]. Third-party devel-
opers can use simple UART commands to communicate with the Cloud, reducing the
effort needed for software development.

Xiaomi has a partnership with other vendors and ecosystems. One example is their
cooperation with IKEA, which enables the use of IKEA smart home products in combi-
nation with the Xiaomi IoT ecosystem [61].

1.9 scope of this thesis

With the increasing usage of IoT devices, their security becomes a serious concern for
security researchers. As stated earlier, there have been already many major security in-
cidents involving IoT devices.

As Xiaomi has the largest ecosystem, in this thesis, I focus on devices which are
integrated with their ecosystem and evaluate their security. My evaluation primarily fo-
cuses on IoT devices with a direct connection to the Internet. Typically these are devices
which use WLAN, but they may have also other interfaces for connectivity. For better
comparison, I will focus on devices which use the ARM architecture. To understand pri-
vacy implications I chose devices with privacy-related sensors, like light detection and
ranging (LIDAR), microphones, or cameras. The actual server infrastructure of Xiaomi’s

3 https://GitHub.com/MiEcosystem
4 https://iot.mi.com

https://GitHub.com/MiEcosystem
https://iot.mi.com

1.9 scope of this thesis 11

ecosystem will be out of scope, as this data is typically out of control of the user as soon
as it gets to the vendor. However, I will analyze the API between Device and Cloud and
App to Cloud, to get an understanding of the data being transmitted.

Finally, I will analyze the possibility of rooting the evaluated devices. This should
give the consumer and other researchers the chance to gain control over the devices,
disconnect them from the cloud, and analyze their software.

2
R E L AT E D W O R K

The effort to gain root access on vacuum cleaning devices is not the first one published.
In fact, there have been successful attacks by the company Checkpoint on LG IoT vac-
uum cleaners [26] in the first half of 2017. The researchers at Checkpoint used the
Universal Asynchronous Receiver Transmitter (UART) to initially connect to the device
and gained access on the actual filesystem using an undisclosed method through U-Boot.
My assumption is that there a modification of the cmdline variable was done to start
a /bin/sh shell by changing the init process. This method is a well-known way to
bypass the login prompt of a device and is the default way for password recovery. It
can be found in various mailing list discussions [56] and Linux tips sites [20]. After
gaining access to the Operating System (OS) via UART, the researchers analyzed the
binaries responsible for the communication to the smartphone app. In the second step,
the smartphone app was analyzed. This required a recompilation of the app, as it had
some protections in place. After recompiling, it was possible to intercept and modify
the network traffic of the app. The researchers found insecurely implemented commu-
nication and authentication protocols. It was possible to change the identity of the user
after the login process and therefore impersonate another user and take control of their
devices. One of the features of that particular vacuum robot is access to the camera of
the device (intended as part of a home alarm system) without the legitimate user know-
ing it. Checkpoint reported that vulnerability, and it was fixed by LG in at the end of
September 2017. The information about the attack was released at the same time when
my preparatory research for this master thesis was done. I took some ideas, like the risk
to spy on the user, in consideration when developing my methods.

Ullrich et al. analyzed the security of Neato vacuum cleaning robots [57]. The re-
searchers used a physical attack to gain access on the bootloader via a debug interface.
After successfully using an exploit to get access to the QNX OS, they were able to analyze
the binaries of the system. There they found multiple remotely exploitable vulnerabili-
ties that affect the whole system’s security.

Alrawi et al. [5] did a security analysis of over 45 different devices, including the
accompanying mobile applications and cloud endpoints. They used different attack vec-
tors, like access to Serial Peripheral Interface (SPI) flash, access via UART, and analysis
of firmware updates. There was also a focus on active network-based attacks on the de-
vices, like vulnerability scans using Nessus. The authors did not specify exactly which
means were successful for each device; instead, more general approaches were described.
While many vulnerabilities were found on devices of unknown vendors, many issues
have been found for most mobile applications of the Internet of Things (IoT) devices. In
particular, cryptography was implemented incorrectly, sensitive data was stored unpro-
tected or the app claimed more privileges on the mobile phones than necessary. Also,
the central cloud endpoints had configuration issues, especially Transport Layer Security

13

14 related work

(TLS) issues. Interestingly, the authors faced challenges in the interception of Wireless
Local Area Networking (WLAN) client-to-client communication. The solution for this
problem was to use two different WLAN access points where the IoT device was con-
nected to one access point, and the mobile phone with the app was connected to the
other. In general, the idea and approaches of their work is similar to my thesis. How-
ever, the focus of my thesis is one particular IoT ecosystem. While the work is related
to my thesis, it was published after most preparatory work was done by me.

Shwartz et al. released in late 2018 their paper about techniques and methods of
reverse engineering of IoT devices [50]. The researchers described a workflow for the
analysis of devices using inexpensive tools. The authors created a set of hardware and
software tools for the reverse engineering process. These hardware tools included screw-
drivers, a multimeter, a logic analyzer, a flash reader (CH341A) and two desktop com-
puters. The authors tried to access the systems using UART connections. If the systems
were protected with a login prompt and the U-Boot bootloader was uninterruptible by
key-presses, fault injection attacks on the flash memory were used to stop the booting
process. If the U-Boot shell was available, the authors used it to boot the system in
single user mode and then replace the root password. As an alternative, the flash mem-
ory was dumped by desoldering the chip and reading it with the CH341A flash reader.
Interestingly, the authors compared NAND flash in TSOP-48 package and SPI flash in
SOIC-8 package, however, the author’s tools are not suitable to read NAND flash at all.
After gaining the firmware, the desktop computers were used in combination with pow-
erful graphics adapters to crack the password hashes using the software JohnTheRipper

and Hashcat. In total, 16 IoT devices, primarily surveillance cameras, were analyzed in
the paper. The workflow of the paper contains many similar elements that I used for
my research. While the methods might work especially well on devices like surveillance
cameras, they are less effective for attacking more complex devices like vacuum cleaners
or smart home gateways. The reason here is, that these devices are using NAND or Em-
bedded Multimedia Card (eMMC) flash, quite often in Ball Grid Array (BGA) packages.
This makes analysis of that kind of flash very difficult given the toolset of the authors.

In 2017 MWR Labs presented an attack on Amazon’s Echo Dot [4]. After reverse en-
gineering the debug interface of the device, which was hidden under the bottom cover,
they were able to access the UART. After investigating the bootloader, they figured out
that there is a way to boot the device from an external boot source. The external boot
source could be attached using the exposed SD card pins and this source was preferred
by the System-on-a-Chip (SOC) over the internal eMMC memory. After booting their
own system, they extracted the contents of the internal eMMC and booted the system
with /bin/sh as the init process. This enabled permanent changes to the file-system
of the Echo device. Having root access on the device, they were able to listen to the
microphone and stream the audio data to a remote device.

Attacks on Xiaomi ecosystem devices are not new. In fact, its surveillance cameras
have been attacked by many people successfully. Davide Maggioni maintains a GitHub
repository "yi-hack-v4"1 with custom firmware for various "Yi" type cameras, which are

1 https://GitHub.com/TheCrypt0/yi-hack-v4

https://GitHub.com/TheCrypt0/yi-hack-v4

related work 15

operating in the Mijia ecosystem. The custom firmware can replace the cloud integra-
tion and adds features like Real-Time Streaming Protocol (RTSP) and Secure SHell (SSH).
The aim of the project is to run the cameras stand-alone or in combination with open-
source smart home solutions like Home Assistant [55]. Another project, named "Dafang-
Hacks", is run by Elias Kotlyar2, which focuses on "Dafang" type cameras, which are sold
under various names, but also exist as a Mijia ecosystem version sold by Xiaomi [14].
Dafang cameras are based on the Ingenic T10/T20 SOC. The "Dafang-Hacks" project has
the same aim as the "Yi-Hack" project, however it supports more smart home solutions.
One of the first modifications of firmware was done by the GitHub user "samtap" and his
repository "fang-hacks"3 in early 2017. His target device was "XiaoFang" branded. which
are ARM-based cameras manufactured by the vendor "iSmart". With his firmware mod-
ifications, he completely disconnected the cameras from the cloud and offered a RTSP
server instead. All three of these camera hacking projects used the same attack vector:
automatic actions by specially prepared Secure Digital (SD) cards. All the vendors in-
tegrated functions in their bootloaders or firmware that scanned attached SD cards for
special files. If these files existed, a particular firmware was installed or a shell script
was executed from the SD card. By reverse engineering the binaries, the researchers
found the triggers to execute a particular action. These triggers probably remain in the
firmware for debugging or production reasons.

Sivaraman et al. [51] published in 2016 a paper discussing the risk of malicious smart-
phone apps attacking local smart home devices. A malicious app can scan the local
network for known vulnerabilities of IoT devices without the user noticing it. Generally,
nearly all apps have network privileges and it is very hard for the user to block them,
in contrast to other privileges like contact list access or position access. The particularly
interesting aspect of this attack is the fact that there are not many defenses against this
attack as long as IoT devices are in the same network as normal end-user devices. This is
usually the case, as a setup with separated networks is too complicated for the average
user and routers have very poor protection against that kind of attacks. For this thesis, I
considered evaluating the possibility of that attack on devices which I analyzed.

2 https://GitHub.com/EliasKotlyar/Xiaomi-Dafang-Hacks
3 https://GitHub.com/samtap/fang-hacks

https://GitHub.com/EliasKotlyar/Xiaomi-Dafang-Hacks
https://GitHub.com/samtap/fang-hacks

Part II

C O N T R I B U T I O N S

The contribution starts with a Xiaomi Ecosystem chapter, where I describe
the design of the ecosystem and the Application Programming Interface
(API). After this follows the Reverse Engineering methods chapter. Here I
give an insight into different approached to reverse engineer and modify IoT
devices. The next chapter concentrates on evaluating the security and pri-
vacy of selected IoT devices in practice. Finally I discuss the relevance of
found vulnerabilities on real world attacks.

3
X I A O M I E C O S Y S T E M

This chapter describes the structure and function of the Xiaomi Cloud ecosystem. Also,
the analyzed devices and their properties will be listed.

3.1 approach

To investigate the structure of the Xiaomi Ecosystem, I followed two approaches: analy-
sis of the Apps and reverse engineering of purchased devices.

As mentioned in the introduction, Xiaomi published on GitHub several repositories,
which contain valuable information, mostly addressed to developers. A repository of
particular interest is miot-plugin-sdk1, which contains a debug version of the official "Xi-
aomi Home" app for Android. This debug version has some additional functions and is
verbose with regard to log files. In addition, the behavior of the app is monitorable us-
ing Android’s logcat2. This significantly helped to understand the connections between
the cloud infrastructure, the apps and the devices themselves.

The "Xiaomi Home" app retrieves at startup a list of supported devices from the
servers. This list is in JavaScript Object Notation (JSON) format, and contains a structure
of the supported devices in a particular region with some additional metadata. This
metadata is helpful in understanding the functionality and features of the devices. An
example of such device description can be found in listing 1. The field "pid" determines
3 the connectivity feature of the device model, e.g., if the device is a Wireless Local
Area Networking (WLAN) device, Zigbee device or Bluetooth Low Energy (BLE) device.
Another interesting piece of information is the URL to the "icon_real" which offers a
picture of the device, which is helpful to distinguish between unknown devices.

Listing 1: Example of a device entry of supported devices

1 ...

2 {

3 "model": "rockrobo.vacuum.v1",

4 "desc": "Mi home sweeping robot",

5 "subcategory_id": "113",

6 "pid": 0,

7 "rank": 0,

8 "pd_id": 85,

1 https://GitHub.com/MiEcosystem/miot-plugin-sdk
2 Logcat is a feature of Androids SDK, which enables easy access to logfiles while runtime. See for more

information here: https://developer.android.com/studio/debug/am-logcat
3 The meaning of "pid" equals the field "iDevice.type" which is described here: https://GitHub.com/
MiEcosystem/miot-plugin-sdk/wiki/ under the point "Device"

19

https://GitHub.com/MiEcosystem/miot-plugin-sdk
https://developer.android.com/studio/debug/am-logcat
https://GitHub.com/MiEcosystem/miot-plugin-sdk/wiki/
https://GitHub.com/MiEcosystem/miot-plugin-sdk/wiki/

20 xiaomi ecosystem

9 "icon_on": "http://cdn.fds.api.xiaomi.com/miio.files/

commonfile_png_3b83f4dd980b9b5398650dc92aa186a8.png",

10 "icon_real": "http://cdn.fds.api.xiaomi.com/miio.files/

commonfile_png_430f65a6257b260001e0f7f15b4a6742.png",

11 "icon_guidepic": "",

12 "icon_bluetooth_pairing": "",

13 "icon_smartconfig_on": "http://cdn.fds.api.xiaomi.com/miio.files/

commonfile_png_e3a5b726bb268111ce2ae3aa21d7b22f.png",

14 "icon_smartconfig_off": "http://cdn.fds.api.xiaomi.com/miio.files/

commonfile_png_1dffc4cba03df545c17876c2d0d3e4fd.png",

15 "icon_smartconfig_succ": "",

16 "gif_smartconfig": "",

17 "sc_type": 0,

18 "resolve_type": 0,

19 "voice_control": 0,

20 "voice_ctrl_ed": 1,

21 "bt_is_secure": 0,

22 "bt_gateway": 0,

23 "icon_336": "",

24 "fiveG_wifi": 0,

25 "ios_sc_visible": true,

26 ...

27 "inherit_id": 0,

28 "mesh_gateway": 0,

29 "member_cnt": 0,

30 ...

31 }

32 ...

3.2 structure

A simplified structure of the Mijia ecosystem is shown in Figure 2

Xiaomi, as the owner of the miIO/Mijia ecosystem, is operating the cloud infrastruc-
ture. While it operates some of the servers in Mainland China itself, most of the actual
infrastructure is run on Amazon Web Services (AWS). This can be discovered by re-
solving the Domain Name System (DNS) names, like ot.io.mi.com and then doing a
reverse lookup of the returned IP addresses. Depending on the region, the number
of returned server IP addresses varies. The cloud infrastructure consists of multiple
components: the interface for the devices (*.ot.io.mi.com), the interfaces for the smart-
phone (*.api.io.mi.com) and a generic Content Delivery Network (CDN) (cdn.*.fds.mi-
img.com). The prefix defines the region. At the moment there are 6 real regions available:
"cn" for Mainland China, "de" for Europe, "us" for the United States, "ru" for Russia, "i2"
for India and "sg" for the rest of the world.

The central component of the Mijia ecosystem is the user’s smartphone with the in-
stalled "Xiaomi Home" app. This app exists for Android and iOS and is developed by

3.2 structure 21

Figure 2: Simplified communication relations in the Mijia ecosystem

Xiaomi. The app is mandatory for the usage of the Mijia features; for most devices the
app is the only user interface. The user authenticates here with his/her user ID. The
user IDs are sequentially assigned. Also, the app is used to initially provision the WLAN
devices and to communicate with the BLE devices. A provisioned device is bound to
a particular user ID. While most devices will connect directly to the Mijia cloud after
provisioning, there is still some communication between the app and the device directly.
Mostly this is used when devices and the smart phone are in the same WLAN network,
so it does not make sense to connect to the device via the cloud. This direct connection
has the advantage of lower latency for commands/responses. If the smart phone and
the device are not in the same WLAN network, then all communication is done via the
cloud. While Xiaomi provides the app, the actual logic of the device is developed by the
device vendors and is provided in the form of a plugin for the app.

The Internet of Things (IoT) devices themselves are the most important component
from the user’s perspective. These devices can have different brand names, and can be
developed and manufactured by different vendors. As mentioned in the introduction,
only a small number of the Xiaomi branded devices are actually developed by Xiaomi.
Each device in the ecosystem has a unique Device ID (DID), a secret Device Key (DKEY)
and Medium Access Control (MAC) address. This information is put on the device at
the time of production and is never changed. Additionally, the model is defined by
the "device model". This device model has the format "vendor.devicetype.model" and is
therefore helpful to identify the actual vendor of a particular device. As soon as a device
is provisioned, the device creates a so-called "device token", which is used instead of the
DKEY as a secret used for communication with the app. Additionally, the device is con-
necting to the configured WLAN access-point and binds itself to the user ID. Every time
a device gets unprovisioned, the provisioning information should be deleted and the
device token regenerated. This token is also used by the Mijia cloud to keep track of a

22 xiaomi ecosystem

Stored information on device permanent? usage

Device ID (DID) ✓ unique device identification

Device Key (DKEY) ✓ key for cloud communication

MAC Address ✓ device identification

Token ✗
key for app communication,
identifier for provisioning

WLAN SSID ✗ connection to wifi

WLAN Password ✗ connection to wifi

User ID ✗ binding to a particular user

Country ✗ setting for a particular region

P2P ID (camera devices only) ✓ unique device ID for P2P

Table 1: Stored configuration settings for Mijia devices

particular provisioning state. Therefore, it is also stored by the cloud. The configuration
information that is usually stored by every Mijia device can be found in Table 1. This
constitutes the minimum information required to communicate with the Mijia cloud. It
was empirically found, that the DID is not bound to a particular MAC address or region.
Also, the device model is not initially set in the cloud and will be updated at the first
connection. However, this device model is not synchronized between multiple regions,
therefore it is possible that the same DID has multiple identities in different regions.

3.3 device api

The communication between the device and the Mijia cloud does not use Hypertext
Transfer Protocol Secure (HTTPS) like other IoT ecosystems. Instead, Xiaomi created
their own protocol, which is often referred to as "miIO". It supports UDP datagrams
and TCP streams, and uses the same payload for both types. The protocol identifies
each device by a unique DID. Each DID has its individual DKEY. The DKEY is used
for the symmetric encryption for integrity and authentication. For encryption, AES256

in Cipher Block Chaining (CBC) mode is used. HMAC ensures integrity and authen-
tication. As an additional feature, the protocol is also used for time synchronization,
as every packet contains the Unix epoch time. This removes the need to synchronize
the time using protocols like Network Time Protocol (NTP). The outer structure of the
protocol is shown in Table 2. As mentioned before, there is also a communication path
between the device and the "Xiaomi Home" app. The protocol used here is the same as
the Mijia cloud communication, except that the device token is used.

The inner structure of the payload is in JSON format and is organized in packets. Each
packet is identified by a packet ID. There are two main types of messages: commands
and responses. Commands usually contain a "method" and "params." Responses usually
only contain an array with the name "results." Usually, every command or response is
confirmed by the recipient. There is a special kind of message type: heartbeats. Heart-
beats are sent by the device every 15 or 30 seconds to keep the connection alive. They

3.3 device api 23

Byte 0,1 Byte 2,3 Byte 4,5,6,7 Byte 8,9,A,B Byte C,D,E,F

Header Magic:2131 Length 00 00 00 00 DID epoch (big endian)

Checksum Md5sum[Header + Key(Cloud)/Token(App) + Data(if exists)]

Data

Encrypted Data (if exists, e.g., if not Ping/Pong or Hello message)
- token = for cloud: key; for app: token
- key = md5sum(token)
- iv = md5sum(key+token)
- cipher = AES(key, AES.MODE_CBC, iv, padded plaintext)

Table 2: miIO protocol structure

have an empty data field. The protocol for the app-to-device communication has been
reverse engineered in 2017 and published on GitHub under the name "python-miio" [67].
However, there was, to my knowledge, no public information available about the device
to cloud communication until I published preliminary information which I gained in
preparation of this thesis.

Listing 2: Example of a message from the device to the cloud

1 {

2 "id":136163637,

3 "params":{

4 "ap":{

5 "ssid":"myWifi",

6 "bssid":"F8:1A:67:CC:BB:AA",

7 "rssi":-30

8 },

9 "hw_ver":"Linux",

10 "life":82614,

11 "model":"rockrobo.vacuum.v1",

12 "netif":{

13 "localIp":"192.168.1.205",

14 "gw":"192.168.1.1",

15 "mask":"255.255.255.0"

16 },

17 "fw_ver":"3.3.9_003077",

18 "mac":"34:CE:00:AA:BB:DD",

19 "token":"xxx"

20 },

21 "partner_id":"",

22 "method":"_otc.info"

23 }

An important functionality of the cloud Application Programming Interface (API) is
the ability to install firmware updates. In general, there are two kinds of firmware
updates: so-called "app" updates and "mcu" updates. "App" updates are for the de-

24 xiaomi ecosystem

vice component, which communicates with the cloud, e.g., the main System-on-a-Chip
(SOC). An example of such a command can be seen in Listing 3. Notice that in addition
to the Uniform Resource Locator (URL), the MD5 hash of the firmware update is also
transmitted. The device can use this information to verify that the firmware update has
not been tampered with, especially if it was transmitted over Hypertext Transfer Pro-
tocol (HTTP). "MCU" updates are for additional processors in the device, e.g., ZigBee
controllers. In Listing 4 an example command is shown. In comparison to the "App" up-
dates, the "MCU" update commands do not transmit an MD5 hash, therefore the device
cannot verify the integrity of the firmware update that way.

Listing 3: Example of cloud command for installing an App firmware update

1 {

2 "method":"miIO.ota",

3 "params":{

4 "app_url":"http://cdn.cnbj0.fds.api.mi-img.com/miio_fw/upd_lumi.

gateway.v3.bin?...",

5 "file_md5":"063df95bd...cf11e",

6 "install":"1",

7 "proc":"dnld install",

8 "mode":"normal"

9 },

10 "id":123

11 }

Listing 4: Example of cloud command for installing an MCU firmware update

1 {

2 "method":"miIO.ota",

3 "params":{

4 "mcu_url":"http://cdn.cnbj0.fds.api.mi-img.com/miio_fw/mcu_lumi.

gateway.v3.bin?...",

5 "install":"1",

6 "proc":"dnld install",

7 "mode":"normal"

8 },

9 "id":123

10 }

A more detailed view of the communication relations from the perspective of the IoT
device is shown in Figure 3. Here, the component for the communication between the
device logic and the cloud is "miio_client". The "miio_client" is part of the Xiaomi Soft-
ware Development Kit (SDK), which is distributed to vendors. To obtain the SDK, one
must register as a vendor and sign a Non-Disclosure Agreement (NDA). Therefore, I
do not have access to the SDK and can only do a black-box analysis. In the case of
Linux-based devices, the configuration is stored in a file with the name "device.conf".
The token is stored in the file "device.token". For RTOS based devices, the configuration
is stored in a configuration partition. Apart from "miio_client", the application logic can

3.4 app to cloud api 25

establish its own connection, e.g., to the Xiaomi File Storage Service (FDS) servers, in
order to download new firmware.

In order to impersonate a device, the only information that is required is the DID and
DKEY. Using this information, it is possible to impersonate different models in differ-
ent regions at the same time. However, as soon as a device model was reported to the
cloud, the model cannot be changed anymore. Interestingly, changing device models
was possible until summer 2018, therefore it was possible to use extracted credentials to
gain information about unknown models and to retrieve firmware updates.

Figure 3: Detailed overview of components for the device communication

3.4 app to cloud api

The app to cloud communication differs from the device to cloud communication. Here,
two different communication layers are used. The outside layer consists of a HTTPS
connection. The inside layer is protected by additional AES encryption plus an HMAC,
which is using a session key. The user authenticated in the app against the cloud using
OAuth [24]. After the authentication, the user receives a service token, which is valid
for 14 days. With this token, the user can send requests to the cloud. An interesting
aspect here is that the service token is not revoked if the user password is changed.

The used protocol inside the payload is JSON Remote Procedure Call (RPC). The
cloud endpoints have different resources to which the apps communicate. For example,
the resource "api.io.mi.com/home/device_list" returns a list of all devices bound to the
authenticated user, as can be seen in Listing 5. The interesting aspect is here, that the
cloud is aware of the geographical location of a device. The source of this information
is the "Xiaomi Home" app at the time of provisioning. As unprovisioned devices run

26 xiaomi ecosystem

an open access-point for the initial configuration, the app needs localization permission
in Android in order to find and to connect to this access-point. Granting the app this
permission results in the behavior that the app is reporting its current position to the
cloud. As the smart phone needs to be in proximity of the unprovisioned device, the
cloud assumes that the smart phones position is equal to the device position. Except for
the region "Mainland China", the information in the fields "longitude" and "latitude" is
"0.0". However, this does not mean that the Xiaomi is still not collecting this information.

Listing 5: Excerpt of a cloud response of the user’s device list

1 {

2 "message":"ok",

3 "result":{

4 "list":[

5 {

6 "did":"65981234",

7 "token":"abc...zzz",

8 "name":"Mi PlugMini",

9 "localip":"192.168.99.123",

10 "mac":"34:CE:00:AA:BB:CC",

11 "ssid":"IoT",

12 "bssid":"FA:1A:67:CC:DD:EE",

13 "model":"chuangmi.plug.m1",

14 "longitude":"-71.0872248",

15 "latitude":"42.33794500",

16 "adminFlag":1,

17 "shareFlag":0,

18 "permitLevel":16,

19 "isOnline":true,

20 "desc":"Power plug on ",

21 "rssi":-47

22 }

23]

24 }

25 }

3.5 interception of cloud traffic : dustcloud

After reverse engineering the first devices, I gained a better understanding of the proto-
col and realized that "python-miio" can also be used to parse and build device-to-cloud
communication. This knowledge was used to build the tool Dustcloud4. Dustcloud is
implemented in Python 3.6 and PHP. It can work in two modes: it can act as a cloud
server emulator or as a proxy between the device and the cloud. As a cloud server,
it can interact with the device and, for example, push updates to it. However, in this
mode the complete communication to the real cloud is disconnected. In proxy mode, it

4 https://github.com/dgiese/dustcloud

https://github.com/dgiese/dustcloud

3.6 devices 27

Region name Region prefix supported models

Mainland China "cn" or none 803

Global "sg" 85

Europe "de" 74

United States "us" 49

Russia "ru" 29

India "i2" 8

Table 3: Mijia devices supported by region

may forward device messages to the cloud, but it can also change or even suppress com-
mands (e.g., in the case of unwanted firmware updates). The advantage of Dustcloud
is that it reads all the traffic in plaintext. Therefore it can be used to reverse engineer
specific commands between the device and the cloud, in order to implement them in
open source smart home software. However, for it to be able to operate, it is required
that the DID and DKEY is known and configured in the tool. Additionally, a DNS redi-
rection needs to be configured. The DNS names "ot.io.mi.com" and "ott.io.mi.com" need
to be redirected to the IP address of the Dustcloud server. However, some devices block
cloud traffic to local IP addresses. Therefore a public IP address needs to be used and
redirected to the local server on the firewall. An example of the configuration can be
found in the Wiki of the GitHub repository5.

3.6 devices

In June 2019, the Mijia ecosystem supported more than 820 device models in all regions
together. The individual numbers can be found in Table 3. While some device models
overlap, it still presents an impressive number. For a closer analysis in this thesis, I
selected a smaller number of device models based on the following characteristics: The
device must be easy to ship due to the research taking place in Darmstadt (Germany)
and Boston (US). Therefore, huge home appliances like fridges or televisions were ex-
cluded. The devices must also have WLAN connectivity as my primary interest is on
devices which have a direct internet connection.

The devices selected for further analysis are shown in Table 4. In this table, the
device is shown with its known name, which may differ from the official name. For
better identification, the Mijia model and the region where the device was purchased
is defined. As mentioned in the introduction, the brand of the device does not always
disclose the actual developer/vendor; I included this information as well. For reference,
there is also the approximate release date for each of the models. This release date might
differ depending on regions. For some devices, the release date was not known and was
therefore estimated. Finally, the approximate price is given. The price was rounded and
is based on the cost at the time of the purchase. The purchases have been made from
many different merchants, like gearbest.com, banggood.com, Amazon.com or even local

5 https://github.com/dgiese/dustcloud/wiki/Preparations-on-the-Vacuum-Robots

28 xiaomi ecosystem

Device name Region Mijia model Vendor Release Price (USD)

Aqara Gateway (Homekit) CN lumi.gateway.aqhm01 Lumi Q2 2018 50

Aqara Gateway (Homekit) US lumi.gateway.aqhm02 Lumi Q1 2019 50

Aqara Smart Home Gateway TW lumi.gateway.mitw01 Lumi Q1 2018 35

Aqara Smart IP Camera CN lumi.camera.aq1 Lumi Q4 2017 35

Lumi Smart Home Gateway CN lumi.gateway.v3 Lumi Q3 2016 30

Philips Ceiling Lamp CN philips.light.ceiling Yeelight Q2 2017 70

Roborock S50 EU roborock.vacuum.s5 Roborock Q1 2018 400

Roborock S50 CN roborock.vacuum.s5 Roborock Q4 2017 350

Roborock T61 CN roborock.vacuum.t6 Roborock Q1 2019 450

Roborock S61 EU roborock.vacuum.s6 Roborock Q1 2019 550

Xiaomi Mi Vacuum Robot CN rockrobo.vacuum.v1 Roborock Q4 2016 280

Xiaomi Mi WiFi Speaker CN xiaomi.wifispeaker.v1 Xiaomi Q4 2016 85

Xiaomi WiFi Plug CN chuangmi.plug.m1 Chuangmi Q2 2016 15

Yeelink Bedside lamp CN yeelink.light.bslamp1 Yeelight Q4 2017 25

Yeelink Bedside lamp TW yeelink.light.bslamp1 Yeelight Q1 2018 30

Yeelink Ceiling Lamp CN yeelink.light.ceiling1 Yeelight Q3 2017 65

Yeelink Light Color CN yeelink.light.color1 Yeelight Q4 2016 10

Yeelink Light Mono1 CN yeelink.light.mono1 Yeelight Q4 2016 10

Yeelink Light Strip CN yeelink.light.strip1 Yeelight Q4 2016 15

Yeelink Smart White Bulb EU yeelink.light.ct2 Yeelight Q2 2018 15

Yeelink Smart RGB Bulb EU yeelink.light.color2 Yeelight Q2 2018 15

Table 4: Overview over Mijia devices to be tested

Xiaomi stores. From my experience, the prices are volatile, depending on promotions of
the merchant websites.

4
R E V E R S E E N G I N E E R I N G M E T H O D S

This chapter describes methods and approaches for reverse engineering of Internet of
Things (IoT) devices in general. The methods are separated in different groups and will
be discussed individually. Then a workflow for the reverse engineering of the devices
will be introduced. In the next chapter, these methods will be used to attack IoT devices.
There are many howtos, workflows [50] and checklists [33] available for testing of vul-
nerabilities and reverse engineering of devices. These are helpful to design a specialized
workflow for a particular ecosystem.

The goal in reverse engineering is to get access to the Operating System (OS) and/or
the firmware itself. There are three main approaches to achieve this: from the network,
via the hardware and via the software. The approach over the network usually means
less effort, but if it is not successful, there is the hardware approach. However, both
approaches can be executed in parallel.

4.1 network

A key feature of IoT devices is the connectivity to the Internet. This offers an active and
passive possibility to analyze the device.

As the device communicates with the Cloud or with local devices (e.g., Apps on
smartphones or even other IoT devices in the local network), the traffic can be passively
monitored. This method is always possible and does not require direct interaction with
the device under test. Suitable tools are Wireshark1, Kismet2 or tcpdump3. The passive
approach has the advantage that the risk of damaging the device is very low. It has
been shown that it has advantages to have a separate router and Wireless Local Area
Networking (WLAN) network for IoT devices, as it enables more control over the traffic.
In particular, a WLAN router can be configured in a way that it blocks direct traffic
between WLAN clients, so called "client-to-client" or "inter-client" traffic, and force the
traffic sent through the router. That way it can be monitored or even modified. An
example network setup is shown in Figure 4. Here all the IoT traffic can be captured
and send to the monitoring computer. In addition, a firewall can block unwanted traffic
towards the Internet. One option is to block Domain Name System (DNS) traffic and
force the IoT devices to resolve host-names using the routers DNS resolver. That way it
is possible to redirect traffic to different servers. Another option is also to use a software
like sslstrip4 in combination with the firewall to intercept Transport Layer Security
(TLS) traffic. This works in many cases as the TLS protocol is poorly implemented on
many devices, if used at all. With this method, it is possible to intercept unencrypted

1 https://www.wireshark.org/
2 https://www.kismetwireless.net/
3 https://www.tcpdump.org/
4 https://moxie.org/software/sslstrip/

29

https://www.wireshark.org/
https://www.kismetwireless.net/
https://www.tcpdump.org/
https://moxie.org/software/sslstrip/

30 reverse engineering methods

traffic between IoT device and cloud backend to understand the communication protocol
or firmware update mechanisms. This method is especially successful for the retrieval of
firmware update packages, which can then be analyzed without extracting the firmware
from the devices using a different method. For my use cases an OpenWRT compatible
router5 is sufficient for all the tasks above, especially as it can run on cheap routers and
offers already a lot of pre-compiled packages.

WLAN Router

Io
T

W
LA

N

In
te

rf
ac

e

IoT Device under test

IoT Device under test

IoT Device under test

WLAN

W
A

N
 In

te
rf

ac
e

Internet

Pa
ck

et
 c

ap
tu

re

Fi
re

w
al

l
Monitoring
Computer

Management
Interface

Figure 4: Example network setup to monitor IoT device traffic

A more active approach is the usage of port scanning tools or vulnerability scanners.
The usual example for port scanning tools is nmap6. Example vulnerability scanners
are Nessus7 or its open-source fork OpenVAS8. Using these tools, it is possible to probe
a device for open ports and exposed services. The information about open ports and
running services is helpful to assume the running OS type and version. Having this
information enables the researcher to select already known vulnerabilities and attack
the system from the network. One service, which is in particular of interest is telnet,
which is in many cases vulnerable and actively attacked [6].

4.2 hardware

The first step in the analysis of the hardware is to check the device for interfaces which
are accessible without opening the devices. Especially interesting are externally accessi-
ble debug interfaces, or storage ports, like SD card slots. The advantage of this method
is that potential warranty seals are not broken and that it is simple. One example for
accessing a debug interface without opening the device is shown in Figure 5. Here the

5 https://openwrt.org/
6 https://nmap.org/
7 https://www.tenable.com/products/nessus
8 http://www.openvas.org/

https://openwrt.org/
https://nmap.org/
https://www.tenable.com/products/nessus
http://www.openvas.org/

4.2 hardware 31

Universal Asynchronous Receiver Transmitter (UART) pins were accessible thru holes
in the case of the Xiaomi Router R3G using needles and paperclips. This was possible
without breaking any warranty seals or leaving traces on the outside of the device.

Figure 5: Accessing the UART pins through venting holes in the case

The next step requires opening the device. Depending on the design of the case, this
might be difficult if the manufacturer used glue or one time clips, which break when
the case is opened. Additionally, the manufacturer might have used warranty seals, so
it becomes evident that the device has been opened. However, for the disassembly of
most IoT devices the same tools can be used as for smart phones repairs, especially as
IoT devices are often less complex. For example, the company iFixit offers various sets
of tools which are suitable9. Upon opening, the Printed Circuit Board (PCB) can be
inspected for debug interfaces. Also the used hardware can be analyzed to get a deeper
understanding of the used architecture and components. Especially test pins on the PCB
are of interest, as they can be probed manually or in an automated fashion, e.g., using
tools like the JTAGulator [22]. In some cases, like in Figure 5 shown, they are directly
visible and marked as such. For manual probing it is helpful to use a multimeter to
measure the voltage of a testpin in relation to ground. Depending on the operating
voltage of the System-on-a-Chip (SOC), an UART TX pin is pulled up to a voltage of
3.3 Volts or 5.0 Volts. A UART RX pin should be pulled down to a voltage of 0 Volts in
relation to ground. In some cases it’s possible to access Serial Peripheral Interface (SPI)
flash without desoldering it using In-System Programming (ISP). Access to a SPI chip
using ISP requires the ability to stop the SOC, e.g., by permanently triggering the reset
pin. The method of opening the case can be regarded as relatively low-risk in regard to
a potential destruction of the device. However, this does not apply for all devices.

If a UART or Universal Serial Bus (USB) port has been found but the access on the OS
is blocked, a fault injection attack can be executed. As mentioned in the introduction,
many SOCs have a fallback mode in case a valid system cannot be loaded. Additionally,
the U-Boot bootloader stops by default in the integrated shell in case loading the kernel
was not successful. This behavior can be exploited by corrupting the data lines of the
flash and prevent loading of the Kernel. This method is safe for SPI and Embedded

9 https://ifixit.com/Store/Tools/Toolkits

https://ifixit.com/Store/Tools/Toolkits

32 reverse engineering methods

Multimedia Card (eMMC) flash, but can cause corruptions on NAND flash, depending
on the SOC. Typically, for eMMC flash, the DAT0 line is grounded. For SPI flash the
CLK signal can be connected to the MISO signal. The usual method for NAND flash is
to ground the IO-0 or IO-1 signals. Depending on the goal, the fault injection is executed
before the device is powered on or shortly after U-Boot has been loaded.

If ISP imaging of the flash is not possible and no suitable debug interfaces are avail-
able, the next step would be to desolder the flash. Depending on the type of flash, the
desoldering process is more or less complex. As this method is very common, there
are how-to guides available online [44]. For most packages, a hot air station can be
used to remove the chip. In case of NAND chips, especially in Thin Small Outline Pack-
age (TSOP)-48 or TSOP-56 packages, a longer application of hot air might be necessary,
which poses a potential risk for surrounding chips and poses the risk of destroying the
chip through thermal stress due to absorbed moisture [35]. A removal of moisture in
a reflow-oven at a low temperature over multiple hours might be necessary. The al-
ternative solution to hot air is to apply a low temperature soldering alloy to pin and
then using a soldering iron to mix it with the existing solder. A commercially available
product is produced by the company CHIP QUIK10, which also holds the patent for the
method. The advantage of this method is that the melting temperature after the mix is
much lower and therefore reduces the risk of damaging parts on the PCB. The melted
solder can be removed by using a desoldering pump or desoldering wick. Unsoldering
and later resoldering the same chip works good for Small Outline Package (SOP) and
TSOP packages. However, the resoldering process for Ball Grid Array (BGA) chips is
more complex, as it requires reballing and a very precise placement of the chip. Usually
more sophisticated tools are required. Without these tools, there is a high risk to perma-
nently damage the device.

Generally, when working with PCBss it is sometimes necessary to be able to solder
very precisely. Therefore a stereo microscope is very useful, as it not only makes solder-
ing easier but also enables a closer inspection of the individual components and traces
on the PCB.

After removing the flash chip, the chip can be read out and its content analyzed. De-
pending on the type of flash, different tools can be used. For SPI flash, a Raspberry Pi
can be used in combination with the software flashrom [43]. In case of eMMC flash,
the Raspberry Pi supports also Secure Digital Input Output (SDIO) connections out
of the box [47]. However, for raw NAND chips, a different tool is required, as the
NAND support of the Raspberry Pi is unreliable due the high number of required pins.
Therefore more specialized tools like FlashcatUSB11 can be used. A special problem of
NAND flash is that it does not contain a controller and therefore the NAND controller
in the SOC is usually responsible to maintain wear-leveling and Error-Correcting Code
(ECC) [11]. As the implementation of the ECC algorithm may differ between different
SOCs, additional reverse engineering might be required in order to extract the data. An

10 https://cdn-shop.adafruit.com/product-files/2660/SMD1.pdf
11 https://www.embeddedcomputers.net/products/

https://cdn-shop.adafruit.com/product-files/2660/SMD1.pdf
https://www.embeddedcomputers.net/products/

4.3 software 33

alternative is to use the exact same SOC, e.g., on a development board, to access the data.

4.3 software

For the software analysis, it is necessary to first retrieve the firmware. This can happen
through the above described network or hardware approach. An additional method is
the retrieval of a firmware update through an impersonated device identity. In the in-
troduction, it was mentioned that the model name of a Mijia ecosystem device can be
changed. The idea here is to extract Mijia cloud credentials from a cheap and insecure
device and then to impersonate a more secure device. That way the firmware update
can be retrieved and analyzed.

The first step of the software analysis is to identify the OS and the installed applica-
tions. This also includes the search for obvious vulnerabilities, back-doors, and potential
methods to obtain root access. For a full OS it can be useful to manually root (e.g., by
enabling Secure SHell (SSH) or telnet) the extracted image, and re-image it on the de-
vice again. That way also the hardware itself can be analyzed.

A more convenient way to analyze firmware is the usage of automated tools. One
example is the Firmware Analysis and Comparison Tool (FACT), which allows auto-
mated analysis of the used OS, software, crypto libraries and potential vulnerabilities.
FACT also enables the simple comparison of different firmware, even between different
devices [65].

Another automatic tool for reverse engineering is the "firmware-mod-kit" [66]. This
kit automatically unpacks known Linux firmware formats and offers the possibility to
modify and repack the firmware again.

One problem with automatic tools is that they do not support bare-metal OSs like
an Real-Time Operating System (RTOS). RTOS-based firmware require manual analysis.
Here, disassembly and decompiling tools are very useful. One tool that I will use for
this thesis is IDA Pro12, however, after March 2019, the tool Ghidra13 is available and can
be used. Ghidra and IDA Pro enable a deep analysis of binaries and offer also to patch
binaries. An advantage of IDA Pro is the integrated multi-platform debugger [28].

The usual problem with a bare-metal OS is that the firmware does not contain any
debug symbols. This makes the analysis complicated. A way to solve this problem is to
get the Software Development Kit (SDK) of a particular SOC or even the ecosystem, and
to compile an example firmware with debug symbols. Then the IDA Pro plugin bindiff

can be used to map the known functions of the compiled example to the unknown func-
tions in the device firmware. bindiff is a comparison tool for binary files, that can find
similarities between disassembled code [68]. It can detect similar functions based on
basic blocks and a call graph analysis. The gained information can be then even used

12 https://www.hex-rays.com/products/ida/
13 https://ghidra-sre.org/

https://www.hex-rays.com/products/ida/
https://ghidra-sre.org/

34 reverse engineering methods

Tool name Usage Vendor

SEGGER J-Link EDU JTAG debug probe SEGGER

Raspberry Pi 3B JTAG interface, SPI interface Raspberry Pi Foundation

FlashcatUSB XPORT Flash programmer (SPI,I2C) Embedded Computers LLC

FlashcatUSB Mach Flash programmer (NAND) Embedded Computers LLC

eMMC Adapter eMMC-to-SDIO adapter exploitee.rs

Leica A60F Stereo Microscope Leica

Scienscope NZ Stereo Microscope with camera Scienscope

AS-5001 Reflow oven SMTmax

AOYUE Int768 Hotair and soldering station Aoyue

Agilent U1241A Multimeter Agilent

Xiaomi R3G Router WLAN Router with OpenWRT Xiaomi

IDA Pro 7.2 ARM Disassembler/Decompiler Hex-rays

OpenOCD On-Chip Debugger on Pi3B Dominic Rath

HxD Hexeditor Maël Hörz

Table 5: Overview over prepared tools for reverse engineering

on other firmware of the same ecosystem.

For the modification of ARM binaries there is a helpful tool with Nexmon [49]. Nexmon
is a firmware patching framework mainly developed for Broadcom/Cypress WiFi chips.
However, it can be used to patch arbitrary ARM binaries. The advantage of Nexmon in
comparison to manual patching is, that the patches can be written in C and the frame-
work takes care of the compilation and linking. This enables the writing of more com-
plex patches without much effort. However, in order to be able to use Nexmon, it is
required to map the firmware binary and to identify interesting functions. As the bi-
nary was stripped of any debug information, the function names were unknown and
need to be retrieved with the described method above.

4.4 summary of tools

In Table 5 the used tools are summarized. This table contains the most important soft-
ware and hardware tools, however, no mechanical tools, like screwdrivers. While the
toolset is powerful, there are some limitations, like the reliable soldering of BGA chips.
For most cases even less expensive tools can be used, e.g., the reflow-oven and the stereo
microscope are optional. The software IDA Pro can be subsidized by Ghidra.

5
E VA L U AT I O N O F D E V I C E S

In this chapter, devices of the Xiaomi ecosystem will be evaluated with regard to their
security and privacy. For that, the methods of the previous chapter will be used. First,
I define the metrics for the comparison of the individual devices. Finally, I analyze a
selection of devices based on these metrics.

5.1 comparison guideline

To compare the devices, I choose to use the following criteria to categorize each device.

5.1.1 Hardware

How tamper resistant is a device? If modified by a third party, how evident is the misuse?
How likely is it that an attempt to tamper with device will render it inoperable? Tamper resis-
tance and evidence is important for Internet of Things (IoT) devices, as especially used
devices pose the risk of being manipulated. Additionally a tamper resistant device pre-
vents supply-chain attacks. However, tamper resistance has also the disadvantage that
it prevents the owner to modify his/her own device.

5.1.2 Firmware security

Is the firmware easily modifiable by a third party? Is secure boot or secure OS used? How
sophisticated is the encryption on any firmware updates? Are the firmware updates signed? Is
the integrity of the firmware update actually verified? Firmware updates are the best way to
attack a system. In case of improperly implemented firmware update mechanisms there
is a risk that a malicious firmware can be installed. The attack vectors here are attacks
from the local network or Man-in-the-middle (MITM) attacks.

5.1.3 Network

Are ports open or services accessible? Is the network traffic encrypted? Is Transport Layer
Security (TLS) correctly implemented? An IoT device is a potential target for hackers,
therefore open and insecure services are posing a risk. The traffic between the device
and the cloud should not be unencrypted, as a malicious third-party can read sensitive
data or even modify the traffic. Even if the traffic is encrypted, it is important that the
encryption is implemented correctly, e.g., the TLS certificates are checked.

35

36 evaluation of devices

5.1.4 Data

Are logfiles or other data stored locally? Is the data and configuration deleted after unprovision-
ing? Usually cloud devices do not require to store information, like usage or sensor
data, on the local device. Also the devices should not store unnecessary logfiles. It is
especially important that all sensitive data (e.g., credentials, logfiles) are deleted after
the device is unprovisioned or a factory-reset was triggered. Otherwise the new owner
of the device could extract that information and potentially abuse it.

5.2 device analysis

5.2.1 Xiaomi Mi Robot Vacuum Cleaner Gen1

The Xiaomi Mi Robot Vacuum cleaner was released in late 2016. While the device was
designed for the market in mainland China, it was quickly imported unofficially by users
in Europe and Russia in particular. One of the reasons for this was the very competitive
price of 350 Euros compared to 800-1000 Euros for similar models from other companies.
There was a huge interest of users to modify the device and change the sound language
from Chinese to English or even other languages. First attempts date back to early 2017,
mainly driven by users in the German forum roboter-forum.com 1, however, no-one was
able to extract the firmware or more information for a long time. A global version of
the model then was released in 2018, which was sold in the rest of Asia and Europe
officially.

While the device was marketed under the brand Xiaomi, it was designed and manu-
factured by the Chinese company Roborock, which acts as the Original Design Manufac-
turer (ODM). Roborock received investments from Xiaomi, however, is still an indepen-
dent company. The device was advertised to operate with 3 different processors, one of
them a quad-core System-on-a-Chip (SOC).

For this thesis I purchased three devices: one for disassembly, one for testing a poten-
tial rooting method, and one device as a reference. More devices have been purchased
later with one month delay between each other to investigate potential modifications of
the hardware.

The further approaches on this device are documented in my dustcloud-documentation
repository under rockrobo.vacuum.v1

2.

First, a TCP port scan using nmap over all ports showed no open ports for the device.
A UDP portscan revealed only the default miIO port 54321. Therefore the next chosen
approach was to analyze the USB connectivity of the device. It was observed, that the
firmware updates are downloaded over an Hypertext Transfer Protocol Secure (HTTPS)
connection. Intercepting this connection using a man-in-the-middle attack failed due
to the correctly implemented TLS certificate verification on the device. The rest of the
network traffic was encrypted. The only traffic that was observed was miIO cloud traffic

1 https://www.roboter-forum.com/index.php?thread/18752-das-system-hinter-dem-robo
2 https://GitHub.com/dgiese/dustcloud-documentation/tree/master/rockrobo.vacuum.v1

https://www.roboter-forum.com/index.php?thread/18752-das-system-hinter-dem-robo
https://GitHub.com/dgiese/dustcloud-documentation/tree/master/rockrobo.vacuum.v1

5.2 device analysis 37

and some TLS traffic.

Figure 6: Disassembled Mi Robot Vacuum Cleaner

After disassembly of the device, the Printed Circuit Board (PCB) was analyzed to
determine the components used for the device (as seen in Figure 6). The disassembly
required to break multiple warranty stickers. The front side of the mainboard PCB can
be seen in Figure 7.

It was discovered that the main processor is a Allwinner R16. This SOC is a special
version of the Allwinner A33 produced by the Chinese company Allwinner [41]. The
R16/A33 is a ARM Cortex-A7 Quad-Core which can be found in many devices like
tablets or even the Nintendo NES Classic Edition [38]. The SOC has access to 512 MByte
DDR3 RAM and 4 GByte eMMC flash. The flash is connected over Secure Digital Input
Output (SDIO). The SOC, the RAM and the Embedded Multimedia Card (eMMC) flash
are Ball Grid Array (BGA) chips. For connectivity there is a Realtek RTL8189ETV single-
band Wireless Local Area Networking (WLAN) module, which is also connected to the
SOC via a separate SDIO interface.

The main PCB contains an additional processor, which is responsible for the real-time
tasks like sensor control. This processor is a STM STM32F103VCT6, which is a ARM
Cortex-M3. As a sidenote: Another processor is built into the Lidar module, a Texas

38 evaluation of devices

512 MB RAM

R16
SOC

4GB
eMMC
Flash

WiFi Module

STM32 MCU

Figure 7: Front side of the mainboard PCB for the Mi Robot Vacuum Cleaner

Instruments TMS320F28026 (which is not on the main board). The main board is con-
nected via cables to various components of the vacuum cleaner: to the tire motors, the
fan, to the battery, to the power connectors on the back of the device, to a micro USB
connector and to other sensors (ultrasonic sensor, compass, accelerometer, IR distance
sensors and bump sensors).

On the back side of the main PCB there are many test-points, however, none were
marked as obvious Universal Asynchronous Receiver Transmitter (UART) or Joint Test
Action Group (JTAG) pins. At the time of the initial analysis those debug pins were un-
known. Due to the large number of test-points (over 50), I decided to find an alternative
way to root the device. The goal was to extract the firmware from the device without
destroying the device.

While connecting to the USB port of the device, it was detected as an Android Debug
Bridge (ADB) interface by the connected computer. However, interaction with the adbd

service on the vacuum cleaner was not successful as it appeared that additional authen-
tication was required. Various tries to send malformed commands to the device were
not successful.

As a last non destructive method it was planned to trigger the "FEL" mode on the
device. The FEL mode is a low-level subroutine contained in the BootROM of Allwin-
ner SOCs [16]. This mode is hardcoded in the SOC so it does not rely on any external
flash media or ROM. According to the User Manual of the SOC the FEL mode can be
triggered if one of this conditions are met: the "Boot-selection-pin" (BSP) is pulled to
ground, no valid boot image is detected on the connected flash media or the FEL mode
is triggered by software [41]. A similar attack invoking the FEL mode was used to ex-

5.2 device analysis 39

tract the firmware of the Nintendo NES Classic console [38]. Due to the nondestructive
approach and missing knowledge about the testpoints, the position of the BSP was un-
known. All the physical buttons of the device were connected to the STM32, therefore
the exact same approach like the Nintendo NES Classic console hack did not work. So
the new idea was to prevent to the SOC to load a valid image from the eMMC flash. Due
to BGA packaging, it was not possible to access the pins of the flash directly. However,
after analysis of the traces on the PCB and chip pinout in the datasheet of the SOC, a
different approach was considered: corrupt the data by grounding the data lines to the
eMMC flash under the BGA chip. The user Florian Lentz, known under the nickname
"Flole" developed a alternative app for the device and was discussing a similar approach
to get access on the device in February 2017 [37], however, his assumptions were incor-
rect with regard to the circuity and the usable tools.

Using the datasheet [40] and the observed traces, I created a tentative pinout for the
chip. As seen in Figure 8 the data lines to the eMMC are at directly at the edge of the
SOC. The datasheet of the R16 contains the dimensions of the SOC, which can be seen
in an extract in Figure 9. The dimension A1 states the space between PCB and the chip,
which is 0.3mm [40]. While this size is too small for an usual wire, one layer of alu-
minum foil would fit. This is, to my knowledge, the first documented use of aluminum
foil to attack a SOC in this way. This attack is more risky as the usual fault-injection
attacks on NAND chips in Thin Small Outline Package (TSOP) packaging.

Using the aluminum foil to shortcut the data pins after powering on the device, it
was possible to corrupt the data in a way so that the SOC could not load a valid image
from the eMMC. This led the SOC to fallback into the FEL mode. After connecting to
the USB connection the FEL mode was successfully using the sunxi-tools 3. Confirming
the FEL mode, the aluminum foil was removed. The FEL mode itself does not allow to
access the eMMC and also does not enable the DRAM. To be able to use the DRAM, it is
required to enter the FES mode. The FES mode is an additional low-level USB interface
on top of the FEL mode which enables to flash the device or to run images [16]. This
mode can be enabled by loading a FES image, similar to a first-stage boot-loader, via
USB onto the device. This FES images are usually only available in special firmware up-
dates for devices, like smartphones, which are meant to be updated via USB. As no such
updates are available for the vacuum robot, many different FES images of smartphones
were tried, of which most did not work as they were hardware dependent. However, a
FES image extracted from the firmware update package of the WINTOUCH Q75S smart-
phone, which is based on an Allwinner A33, did work and successfully initialized the
FES mode. Using the modified U-Boot bootloader from the same smartphone, it was
possible to enable the eMMC interface and extract the contents of the eMMC flash via
the USB connection. Due to the used protocol, the extraction of the 4 GByte flash took 1

hour and was not stable. After multiple tries, which required power-cycles and repeated
use of aluminum foil, a full image was successfully created.

The extracted partition layout can be found in Table 6. The device contains 3 copies
of the operation system: one recovery copy, an active copy and a passive copy. The

3 http://linux-sunxi.org/Sunxi-tools

http://linux-sunxi.org/Sunxi-tools

40 evaluation of devices

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A

MMC

Reset D6 D4 D2 D0 D2 D0 CLK TX UART1

B D7 D5 D3 D1 D3 D1 CMD RX

C CLK SDA TWI1

D RX TX CMD SCL

E

F

Recov

ery

Confir

m UART2

G RX TX

H

Line

IN L

J

LINE

IN R

K

PHON

E IN L

L

PHON

E IN R

M

PHON

E OUT

MIC1

P

N

PHON

E OUT

MIC2

P

P SDA SCK RESET RSB0

R

T LCD9 LCD7 LCD5 LCD3 LCD1
USB-

DM0

USB-

DP0 USB 1

U LCD8 LCD6 LCD4 LCD2 LCD0
USB

DRV

USB-

DM1

USB-

DP1 USB 2

DRAM VCC/VDD GND LCD

UART0 MMC2 MMC1

Figure 8: Reverse Engineered Pinout of the R16 SOC in the Mi Robot Vacuum Cleaner

recovery copy is never updated. The active and passive copy have the same contents.
The operation system running on the device was Ubuntu 14.04.3 LTS and is stored in
an EXT4 file-system. Most parts of the OS were not touched. Instead the developers
added most of the custom software under the path /opt. There is an "app" partition,
which is mounted as read-only under /mnt/default. This partition contains the device
configuration and device key. Another partition, "UDISK" is mounted under /mnt/data
and contains log-files and maps.

It was found that the SSH daemon is running but is blocked by an iptables rule. For
navigation the open-source software player 4 is used. Also the listening ports of player
are blocked by iptables. The iptables rules are set by a custom watchdog process,
which also starts all the other custom software. As a first step, the iptables rules were
disabled and an "authorized_keys" file was added under /root/.ssh. The modified image
was then written back using again the FEL mode. No special protections like SecureOS
or SecureBoot were found. As the device did not verify the integrity of the file-system
image, the modification was successful and Secure SHell (SSH) access was now possible.
It was noticed that it is always possible to restore the original state of the Operating
System (OS) by issuing a factory reset (by pressing the Home and reset button simulta-

4 http://playerstage.sourceforge.net/

http://playerstage.sourceforge.net/

5.2 device analysis 41

Figure 9: Sideview of the R16 SOC with dimensions from the R16 Datasheet [40]

Label PartionID nand{} Size in MByte Start address

boot-res a 8 0x00008000

env b 16 0x0000c000

app c 16 0x00014000

recovery d 512 0x0001c000

system_a e 512 0x0011c000

system_b f 512 0x0021c000

Download g 528 0x0031c000

reserve h 16 0x00424000

UDISK i ∼1900 0x0042c000

Table 6: eMMC partition layout for Mi Robot Vacuum Cleaner

neously). The factory reset overwrites the active and passive copy of the OS with the
recovery one, independently of any firmware update. No downgrade protection was
implemented.

Having shell access on the system, it was now possible to identify the responsible
processes. The identified processes and their functions can be found in Table 7. For a re-
mote rooting method it is necessary to analyze the firmware update process. Therefore
all the processes have been analyzed using the IDA Pro 7.0 disassembler and decom-
piler, and additionally using GDB.

The most important process is WatchDoge, as it sets up the environment and starts
all other robot processes. WatchDoge also monitors the processes and restarts them in
case of errors or unexpected behaviour. It also keeps a counter for occurred errors and
restarted processes. If a particular threshold is reached, it sets a flag in the boot-loader

42 evaluation of devices

Process name Function

WatchDoge Watchdog, runs and monitors all other processes

miio_client Connects to Mijia cloud, proxy for internal and external messages

AppProxy Logic for cloud commands, controls robots behaviour

RoboController Initializes sensors and functions on the robot

player Navigation, communication to STM32

rrlogd Collects logfiles and uploads them to the Mijia cloud

SysUpdate Only active while system updates, handles update process

Table 7: Responsible processes running on Mi Robot Vacuum Cleaner

to switch to the secondary copy of the OS or even restore the device from recovery.

For communication between the internal components of the robot and the Mijia cloud,
there is the miio_client. This software originating from Xiaomi’s Mijia Software Devel-
opment Kit (SDK) was not modified. This process is using the device configuration and
key material to establish a secure connection to the Mijia cloud. Other than that, the
miio_client is only responsible to set up the initial WLAN connection. It was noticed
that the forwarded commands to the internal components do not contain an information
whether the command was issued from the cloud (using the cloud key) or from the app
(using the token). This is expected behaviour for that SDK version.

The cloud logic is implemented in the AppProxy process. This process contains all sup-
ported commands and triggers the corresponding actions. In particular it communicates
with the RoboController, player, rrlogd and SysUpdate via named pipes. It is also re-
sponsible to upload map files and handling the sound packages. In case of firmware
updates, it invokes the SysUpdate process and transfers the parameters. The supported
commands of AppProxy can be found in my dustcloud-documentation repo5.

While the RoboController, player and rrlogd process are important for the function
of the device, I believe that they are less relevant for a potential rooting possibility. The
reason for this is, that this processes do not expose external interfaces and are invoked
by other processes.

To understand the firmware update, the relevant processes have been further analyzed
and monitored. It was seen, that the AppProxy receives the update command and starts
the SysUpdate process. SysUpdate then uses the URL from the update command to
download the firmware from Xiaomi’s Content Delivery Network (CDN). For the down-
load the CURL library 6 is used and the TLS certificates are checked. After downloading
the file, SysUpdate computes the MD5 checksum of the firmware file and compares it to
the MD5 checksum in the update command. If it matches, the firmware file is decrypted
and extracted to the download partition. In the next step, the default root password is

5 https://GitHub.com/dgiese/dustcloud-documentation/blob/master/rockrobo.vacuum.v1/
app-proxy-commands.txt

6 https://curl.haxx.se/

https://GitHub.com/dgiese/dustcloud-documentation/blob/master/rockrobo.vacuum.v1/app-proxy-commands.txt
https://GitHub.com/dgiese/dustcloud-documentation/blob/master/rockrobo.vacuum.v1/app-proxy-commands.txt
https://curl.haxx.se/

5.2 device analysis 43

replaced by a device specific one. The specific password is stored obfuscated in the file
/mnt/default/vinda and is XOR’ed with the ASCII "7". After setting the password, the
content of the download partition is written onto the passive copy of the OS. Then the
device reboots into the updated, former passive copy, now active copy partition. Finally
the former active copy is updated.

It was seen in the update process, that the firmware update packages were encrypted
but not signed. That means that everyone who knows the encryption key can create
new firmware packages or modify existing packages. As AppProxy and SysUpdate are
not aware if the update command was received from the cloud or the app, this can be
used to remotely push a firmware update onto the device and root it.

To find the encryption key and method, the SysUpdate binary was loaded into IDA

Pro and a search for potential interesting strings was conducted. As shown in Figure 10,
all the relevant strings for verification of the integrity and decryption were very close
together. It was found that the open-source software CCrypt 7 was used to encrypt and
decrypt the firmware image. CCrypt uses 256-bit Rijndael (AES) encryption. The hard-
coded encryption key is "rockrobo". The decrypted firmware package contains a full
EXT4 file-system.

Figure 10: Screenshot of IDA Pro inspecting the Strings of the SysUpdate binary

Using the encryption key, it was now possible to decrypt existing firmware updates
and create modified updates. As the same encryption method is used for the sound
packages, the encryption key "r0ckrobo#23456" was found. Now it is possible to push a
custom firmware and sound packages onto the vacuum robot using the token with-
out opening the device. The token can be extracted from the Xiaomi Home app or

7 http://ccrypt.sourceforge.net/

http://ccrypt.sourceforge.net/

44 evaluation of devices

directly queried from an unprovisioned device. This rooting method is applicable to
all Mi Robot Vacuum Cleaners. The URLs of the firmware files were predictable and
could be enumerated as soon as one URL is known. The reason for this is the file
format "v11_00xxxx.pkg" where "xxxx" is the version number, e.g., "3096". So if the
URL "https://cdn.awsbj0.fds.api.mi-img.com/updpkg/v11_003096.pkg" is known, the
number can be incremented and the version "v11_003132.pkg" can be found. In 2019

an additional, unique String was added before the .pkg extension, making it harder to
guess the correct filename.

Having root access on the device made it possible to create a signal on the UART
ports. Using that it was possible to identify the UART ports among the test points. Hav-
ing access to UART simplifies debugging and enables easy interaction with the U-Boot
boot-loader. Additionally, with the knowledge of the root password (which can be de-
obfuscated from the "vinda" file as mentioned earlier) access independent of the WLAN
network is possible. Figure 11 shows the soldered UART connection. It has proved to
be advantageous to additionally use hot glue to secure the soldered connections against
physical stress and vibrations while operating the device.

Figure 11: Method of soldering the UART pins on Mi Robot Vacuum Cleaner

After gaining root access, it was now possible to further analyze the data collected
and stored on the device. The component of interest were the ultrasonic distance sensor

5.2 device analysis 45

and the speaker, as they are potential possibilities to be used as microphones to snoop
on the user. It was analyzed whether the receiving part of the ultrasonic distance sensor
can be accessed as a microphone or if the whole module just acts as a switch. Due to
the design of the distance module it is assumed that it acts as a switch. In addition it is
connected to the STM32 via a normal General-Purpose Input/Output (GPIO), therefore
it would be difficult to sample audio signals. The vacuum robot offers audio feedback
using a speaker, which is connected to the R16 SOC. It was verified empirically and via
the R16 user manual [41] that the integrated audio codec in the R16 does not offer the
retasking feature of the audio output pins and should be not able to use the speaker as
a microphone as defined in the "HD Audio" standard [23].

Multiple devices have been operated over multiple months and the collected data has
been analyzed. The device creates while operating temporary maps, which are used
for computing the navigation by the player process. These maps are bitmaps and each
pixel represents an area of 5cm times 5cm. An example for such map can be found in
Figure 12. The same maps are uploaded to the using TLS to the FDS cloud as they are
used by the "Xiaomi Home" app to show the progress of the device while operation to
the user.

To track the changes in firmware updates, the firmware versions starting version
"3.3.6_003061" (Spring 2017) until "3.3.9_003468" (Spring 2019) have been collected. It
was noticed that log-files and maps were stored unencrypted on the device and were
not deleted in case of a factory reset. The logfiles contain WLAN credentials and other
sensible information, like user ID and WLAN Medium Access Control (MAC) addresses.
If a device is reset and sold to someone else, the new owner can access the maps and
can extract the sensible information from the logfiles. In preparation of this thesis, this
issue was reported to the manufacturer. Beginning with version "3.3.6_003514", which
was released in September 2018, the log-files and maps were locally encrypted with a
public key before they were uploaded into the cloud. Also the data partition was now
erased while the factory reset. This happens however, not in a secure way.

To maintain permanent SSH access to the device, it is sufficient to upload a "autho-
rized_keys" in /root/.ssh and to remove the firewall rules in /opt/rockrobo/watchdog/rrwatchdoge.conf.
I developed a tool to automatically build custom firmware updates. This tool is pub-
lished on GitHub8.

5.2.2 Roborock Vacuum Cleaner S50

Roborock released in late Fall 2017 the Roborock Vacuum Cleaner S50. In contrast to the
Xiaomi Mi Robot Vacuum Cleaner, this device was sold under the brand name Roborock.
Therefore Roborock was the Original Equipment Manufacturer (OEM) itself.

The model was prepared from the beginning to be sold globally. In comparison to
the Mi Robot Vacuum Cleaner it was more expensive, but offered a sweeping function.

8 https://GitHub.com/dgiese/dustcloud/tree/master/devices/xiaomi.vacuum/firmwarebuilder

https://GitHub.com/dgiese/dustcloud/tree/master/devices/xiaomi.vacuum/firmwarebuilder

46 evaluation of devices

Figure 12: Stored map (scaled) on Mi Robot Vacuum Cleaner

Additionally Roborock claimed the S50 supports cleaning zones and an "goto" function.
The company claimed, that this features were only possible on the S50 and not on the
Xiaomi Mi Robot due to hardware changes.

For this thesis two devices have been purchased: one global version and one Chinese
version. The idea behind the different versions was to understand what the differences
between regions are.

At the time of release Roborock was not aware of any rooting method, because the
research of this thesis was not published. This fact was confirmed by the company in a
meeting in December 2018. Therefore the company reused most components and soft-
ware of the Mi Robot Vacuum Cleaner. There were no countermeasures in place and
even the firmware encryption keys stayed the same.

5.2 device analysis 47

The pictures and additional supplemental material can be found in my dustcloud-
documentation repository under roborock.vacuum.s5

9.

The devices were disassembled similar to the Mi Robot Vacuum Cleaner. The disas-
sembled device is shown in Figure 13. Apart from the new sweeping function, it was
noticed, that the USB connection have been moved and that now a different charging
method is used. The front side of the PCB is shown in Figure 14. Analyzing the PCB
it was confirmed that the same platform as the previous model is used. So the main
SOC is the Allwinner R16, with 512 MByte DDR3-RAM and 4 GByte eMMC flash. Also
the software is nearly exactly the same as for the Mi Robot Vacuum Cleaner, except for
some small changes in regard to changed GPIOs and one additional switch. So every-
thing from the section before still applies, including the rooting methods.

One change which was noticed at disassembly was the fact that the part of the PCB
is coated. However, it turned out as typical conformal coating, probably due to the fact
that the device can operate with water. In that sense the coating was not a anti-tamper
measurement.

The region of each device was defined by a variable in the config file "/mnt/default-
/roborock.conf". This file was not protected, therefore a conversion from a Chinese
model to a global model, and vice versa, was possible. The change of the region had an
influence on the used cloud servers for the map and log upload.

In regard to the newly advertised functions, an analysis of the player binary showed,
that the limitations of the older model in regard cleaning zones and the "goto" function
are purely software based. After publishing this result in Summer 2018, the company
added the features to the older models.

Similar to the Mi Robot, the firmware versions of the device have been collected from
version "3.3.9_001168" (Spring 2018) until "3.3.9_001748" (Spring 2019). Similar to the
previous model, Roborock introduced encrypted user-data and correctly implemented
factory-reset in September 2018 with version "3.3.9_001518". However, it is still possible
to extract some information from the partition using forensic methods like imaging.

To maintain SSH access on the device, the same methods apply as for the Xiaomi Mi
Vacuum Robot. Also my custom firmware update tool works for this model.

5.2.3 Roborock Vacuum Cleaner S6/T6

In April 2019 Roborock released the models S6 and T6 as successors for the S5 model
series. While the hardware is the same for both models, the T6 model is only intended
to be used in mainland china, while S6 is the global model. There is also a huge price
difference between both models.

Compared to the S5 there are little changes: the brushes were redesigned and an addi-
tional reed contact for the water tank added. Additionally the tires have been replaced.

9 https://GitHub.com/dgiese/dustcloud-documentation/tree/master/roborock.vacuum.s5

https://GitHub.com/dgiese/dustcloud-documentation/tree/master/roborock.vacuum.s5

48 evaluation of devices

Figure 13: Disassembled Roborock Vacuum Cleaner S50

Feature-wise Roborock added multi-room cleaning and multi-floor maps. The company
claimed also that the new model is quieter than the predecessor models.

This models have been designed after the rooting methods and attack vectors for the
previous models have been published. Also as part of this thesis there has been a visit
in December 2018 of the Rockrobo’s headquarters in Beijing with consultations about
security methods. Therefore it was expected that most of the existing vulnerabilities
and rooting methods would be fixed.

After purchasing the T6 model and importing it from Mainland China, the device
was disassembled and analyzed. Most of the case is exactly the same as for the S5

model series. There have been some minor changes to the PCB due to the new type of
tires and the new water tank sensor. Additionally, there was a second filter in the fan
exchaust. Other than that, the layout of the PCB and hardware specs remained the same.

The pictures and additional supplemental material can be found in my dustcloud-
documentation repository under roborock.vacuum.t610.

While the software analysis, it was noticed that the usual method to push a firmware
onto a device did not work anymore. Also the firmware packages were now encrypted
differently in comparison to previous models. For further analysis, a connection using

10 https://GitHub.com/dgiese/dustcloud-documentation/tree/master/roborock.vacuum.t6

https://GitHub.com/dgiese/dustcloud-documentation/tree/master/roborock.vacuum.t6

5.2 device analysis 49

512 MB
RAM

R16
SOC

4GB
eMMC
FlashWiFi Module

STM32
MCU

Figure 14: Front side of the mainboard PCB for Roborock Vacuum Cleaner S50

UART was established. The pins used for UART in S5 remained the same in S6/T6. Fig-
ure 15 shows the setup to connect to the UART pins. Due to the position on the bottom
side of the PCB, it was required to remove the whole board from the case and power it
directly over the battery.

It was assumed that the extraction of the obfuscated root password would still work
over the U-Boot shell. Therefore the U-Boot autoboot was interrupted by continuously
pressing the key "s" while powering on the device. This has given access to the U-Boot

shell. The content of the vinda file was loaded into the memory and then printed out.
The resulting string was XORed with ASCII "7" and the login with the user "root" was
possible. However, it turned out, that the login shell was replaced by the custom binary
rr_login. Therefore there is a risk that this method will be blocked in the future. As an
alternative it was tried to change the parameter cmdline and change the init process to
/bin/sh. This successfully lead to a temporary root shell after booting the device. Here
the kernel armed the hardware watchdog of the R16 SOC and as the WatchDoge process
was not started, the system rebooted after around 3 seconds. Usually the WatchDoge

progress will regularly reset the watchdog timer by sending hearthbeats. As this does
not happen, I needed to stop the watchdog completely. The Linux kernel has the special
device file /dev/watchdog for the interaction with the watchdog and the watchdog can
be disabled by sending the specific magic character "V" to that device file [54]. After
booting the system into /bin/sh as the init process, the watchdog was successfully
disabled, if the magic character has been written to the watchdog in time. After this,
the root access was established the same way as for the previous models: removing the
firewall rules blocking SSH and creating an authorized_keys file.

50 evaluation of devices

Figure 15: Setup of T6 Mainboard for UART connection

Process name Function

WatchDoge Watchdog, runs and monitors all other processes

miio_client Connects to Mijia cloud, proxy for internal and external messages

AppProxy Logic for cloud commands, controls robots behaviour

RoboController Initializes sensors and functions on the robot

rrloader Navigation, communication to STM32

rrlogd Collects logfiles and uploads them to the Mijia cloud

SysUpdate Only active while system updates, handles update process

Table 8: Responsible processes running on Roborock T6 Vacuum Cleaner

With having SSH access, it was possible create a copy of the contents of the device
by imaging the special device file /dev/mmcblk0. Also all other information of the de-
vice have been copied, e.g., the serial number and the volatile shared memory files in
/run/shm. Also the processes were analyzed as shown in Table 8. It was noticed, that
the player process was replaced by rrloader. Although the used libraries seem to be
the same as for player, there is now some new functionality using OpenCV framework.
It is assumed that rrloader is actually a modified player.

It was noticed, that some of the configuration files changed. In particular the file
roborock.conf in /mnt/default contained now a new parameter field "cpuid". In addi-
tion, there was a new file roborock.conf.sign. The binary of AppProxy was analyzed
using IDA Pro to find the changes in relation to the roborock.conf. I saw, that before the
file roborock.conf is parsed, its signature is verified with the file roborock.conf.sign.

5.2 device analysis 51

The function responsible for this check, "rr_sec_verify_conf()" is imported by AppProxy
from the library librrlocale.so. The actual 2048 bit RSA signature public key is stored
obfuscated in the binary by splitting the public key in two parts: every second byte is
deleted and is stored in a second string. One half of the public key is shown in Listing
6. By obfuscating the public key, it is not found if someone is searching for the string "—
–BEGIN PUBLIC KEY—–". However, this method of obfuscation was not very effective,
as I could reassemble the key quickly.

Listing 6: Half of the obfuscated public key in AppProxy

---EI ULCKY--\n"

"IBjNgqkGwBQFACQAIBgCQA3U+h+162yV2QYAIz7TBP2i6mhpZcgIXK8g1lngUVoh\n"

"W0nUActG/QqhoK8Eb818G3A+wCs8kQgm+in1cwWtx4WMXqM1MW957RvavOKJi/mu\n"

"p1mMd4WSVkv/6OIhybVpVr2lDYd2AmSPa4YnsBWMnO8FvPNc/WU9erXnoCi6hPRl\n"

"QDQB---N ULCKY--"

If the check is successful, then the SOC serial number, which is retrieved by ker-
nel Application Programming Interface (API), is compared with the field "cpuid". In
case of a success, the rest of the file is parsed and the region settings are set (e.g.,
logging server or language settings). If the signature or cpuid check fails, then the
device falls back to region settings of Mainland China. The region setting defines,
whether users outside from Mainland China are being blocked or not. Roborock in-
troduced with that effectively a region lock for their devices, in order to prevent the
export and usage of Mainland China devices in the rest of the world. This region
lock seems to be triggered if the "Xiaomi Home" app reports a different timezone to
the vacuum than "Asia/Beijing". Interestingly Roborock implemented also an online
whitelist, where the AppProxy process sends the serial number to the API endpoint
https://apiiot.roborock.com/fwapi/checkwl?sn=%s&cpuid=%s. This API can also en-
force a particular region on a device. However, by patching librrlocale.so it is possible
to disable the signature check, modify the region and pass the region check.

In the next step I took a look at the firmware update mechanisms. I noticed, that
ccrypt is not used anymore and instead mbed TLS is now used to decrypt the firmware
image. In contrast to the previous models, the firmware is now also signed. The signa-
ture has a length of 256 bytes and is stored in the last 1028 bytes of the firmware file. The
signature is verified using a 2048 RSA public key, which differs from the key used for
the configuration files, however, uses the same obfuscation method. To extract the en-
cryption key of the firmware, the function "mbedtls_aes_setkey_dec" was hooked using
the IDA Pro debugger. This function is responsible to set the key and the Initialization
Vector (IV) for the following decryption operation [64]. The now extracted encryption
key and signature key were used to implement a firmware unpacking tool. This tool was
also tested against sound packages, which decrypted them successfully. Having signed
firmware packages and sound packages makes it impossible to create custom firmware
using a similar way as in previous versions. An analysis of the miio_client revealed
that Roborock modified the program in order to block over-the-air (OTA) update com-
mands from the local API. Instead, only firmware update commands from the cloud are
accepted.

https://apiiot.roborock.com/fwapi/checkwl?sn=%s&cpuid=%s

52 evaluation of devices

Due to the changes in the firmware update process, my tools cannot build a custom
firmware update anymore. Also it is not possible to even push the vendors firmware
packages via the local API anymore. Therefore the user needs to disassemble the device
and connect to UART in order to get SSH access. Same as before, the SSH access does
not survive firmware updates and gets removed as the whole partition is overwritten.
The only way to restore similar functionality, like for the earlier models, is to patch the
public keys in the binary and to replace miio_client with an older version.

5.2.4 Lumi Smart Home Gateway

The Lumi Smart Home gateway was released in late 2016. It was the core of the Zig-
bee based products in the Mijia ecosystem. The device had three iterations, the version
tested here is "lumi.gateway.v3". The device acted as a gateway between battery oper-
ated Zigbee sensors and the Mijia cloud. The connection to the cloud was established by
WLAN. Additionally the device offered a webradio function, however, the radio stations
were Chinese only. One reason for this is, that the device was never intended to be used
outside of Mainland china and was therefore not advertised there.

A peculiarity of this device is, that the vendor Lumi did offered a local API, where
some functions of the device could be controlled without interaction with the Mijia
cloud [15]. This API was documented and used by many users to interact with the
Zigbee sensors. However, this API still required that the gateway is connected to the
Internet. Otherwise the local API would not be started. In addition, the local API needs
to be enabled in the "Xiaomi Home" app, therefore a cloudless usage of the device is not
possible [59].

From this model there have been 3 devices purchased. Here the idea was to destroy
one devices in order to get all the necessary information to get access on the other
devices.

My network scan revealed the usual miIO service on port 54321(udp) and additionally
the local API port 9898(udp). However, both ports were not usable in order to get priv-
ileged access on the device. An analysis of the traffic revealed, that while the local API
and Mijia traffic was encrypted, the firmware updates were not. The firmware updates
for the device itself and for the subdevices(e.g., sensors) were sent in plain-text over
HTTP. In order to prevent an actual firmware update, the download of the firmware has
been blocked. Therefore the device remained on the older version.

One of the intercepted firmware files was "upd_lumi.gateway.v3.bin" with the MD5

"94571c41d164cc84a8a5ba249c44629e". This represents the version "1.4.1_150". Another
intercepted file was "mcu_lumi.gateway.v3.bin", which represents the firmware for the
Zigbee controller and will not been further analyzed here. Upon analysis of the file
"upd_lumi.gateway.v3.bin" in HXD hex editor, I noticed, that the header contained "MRVL"
as the file magic. I found that this header was used for Marvell 88MW300 and 88MW302

SOCs. A public version of the SDK was available11. This SDK included example projects
and the tools necessary to build a firmware. Especially the tool axf2firmware was in-

11 http://marvell-iot.GitHub.io/

http://marvell-iot.GitHub.io/

5.2 device analysis 53

Byte 0-3 4-7 8-11 12-15 16-19
Magic Magic Timestamp # of segments entry address

0x00000000 4D 52 56 4C 7B F1 9C 2E FF BE A8 59 03 00 00 00 19 37 00 1F
MRVL 0x1f003719

segment magic offset in file size of segment mem addr checksum
0x00000014 02 00 00 00 C8 00 00 00 50 36 00 00 00 00 10 00 20 C8 51 7D

0xc8 0x3650 0x100000

segment magic offset in file size of segment mem addr checksum
0x00000028 02 00 00 00 18 37 00 00 28 15 08 00 18 37 00 1F 0A 11 25 85

0x3718 0x81528 0x1f003718

segment magic offset in file size of segment mem addr checksum
0x0000003C 02 00 00 00 40 4C 08 00 54 19 00 00 40 00 00 20 FB 5F ED 39

0x84c40 0x1954 0x20000040

Table 9: Reverse engineered format of Marvel 88MW30x firmware binaries

teresting, as it converts a binary from the ELF-format into the vendor specific firmware
binary format. In this case the difficulty was that I had only the final firmware binary,
but not the executable file with the debug symbols and memory allocations. It was
required to reverse engineer axf2firmware in order to understand the firmware format.
The result can be seen in Figure 9.

I created a parser for Marvel firmware, which converts the firmware binary format
into ELF files. The parser creates the ELF header and reassembles the corresponding
sections. This enables to load the binary into IDA Pro and further analyzing it. The
parser is published on GitHub12. With the ability to create and reverse the building
process of the proprietary firmware format, I tried to modify the firmware. For that
I changed the version number string in the ELF binary and created the proprietary
firmware binary again. To test if the device verifies the integrity of the firmware, I
redirected the Domain Name System (DNS) name "cdn.cnbj0.fds.api.mi-img.com" to my
own webserver and placed the modified binary under the same name as the original
firmware. After triggering the firmware update from the "Xiaomi Home" app, I noticed,
that the update was successfully installed and the "Xiaomi Home" app showed now my
version number string. This meant, that the integrity of the firmware is not verified and
therefore firmware files can be easily swapped. As the firmware is downloaded over
plain-text HTTP, this offers a very good way to install a custom firmware. However, the
limitation is here, that there must be a firmware update available for the device as the
"Xiaomi Home" app does not allow updates for devices on the latest version.

In the next step, the device was disassembled carefully. For this 3 screws on the
bottom of the device have to be removed. One of the screws had a small warranty
sticker on it, which was damaged in the process of opening the device. The dangerous
aspect of this particular device is, that it also contains the power supply, which is directly
connected to the mains. Therefore there is a potential dangerous voltage of 110V/220V

12 https://GitHub.com/dgiese/dustcloud-nexmon/tree/master/firmwaretools/Marvel_MW30x

https://GitHub.com/dgiese/dustcloud-nexmon/tree/master/firmwaretools/Marvel_MW30x

54 evaluation of devices

on the power supply PCB. A picture of the opened device can be found in Figure 16.
As seen here, the part with the actual SOC and the Flash memory is hidden under the
Electromagnetic Interference (EMI) shield. This shield was soldered onto the module
and could not be removed easily. Also on the PCB can be found a NXP JN5169 chip,
which is a Zigbee Microcontroller Unit (MCU) [63].

Figure 16: Front side of the PCB in Lumi Smart Home Gateway

To avoid thermal damages, the shielding was carefully removed using a rotary tool.
In particular it is required to not cut too deep into the metal in order not to damage any
of the parts inside the shielding. After removing the shielding, the parts inside of the
module have been analyzed. The SOC was identified as Marvell 88MW302, a Cortex-
M4F processor. Using the datasheet of the chip [1] and the multimeter it was possible
to map some of the pins to the outside test-points. The challenge here was the size of
the chip which required a microscope in order to proper connect to the corresponding
pins. Additionally the 16 MByte Serial Peripheral Interface (SPI) flash was accessible. I
desoldered the flash chip and created an image. The partition layout was parsed and is
shown in Figure 17. In contrast to the Roborock vacuum cleaners, here the device cre-
dentials have been not found on the flash. Therefore I assumed, that they are stored in
the One-Time-Programmable (OTP) memory. 18 shows the PCB after analysis and with
the mapped test-points. Especially important for the further research is the availability
of the Serial Wire Debug (SWD) pins, as it enables direct memory access.

Having access to the UART enabled access to a shell on the device. The OS running on
the device is a Real-Time Operating System (RTOS), which is containing every function
in one single binary. While the OS supports some interesting commands, there is no

5.2 device analysis 55

Figure 17: Partition information extracted from SPI flash of Lumi Smart Home Gateway

option to print the device’s cloud key. Only the last 2 bytes of the cloud key are shown.
A sample output of the console can be found in my GitHub repo13.

To get more information about the memory layout, a Raspberry Pi was connected to
the SWD of the gateway [2]. I used OpenOCD to get access to the memory of the device
and extract memory dump. The required parameters for the connection were available
in Marvell’s GitHub repository14. I found that the device ID, key and MAC are stored
beginning at the address 0x2000037E. As shown in Figure 19, firmware binary itself con-
tains at this address placeholders. This means, that the credentials are copied to this
area after booting the device and it was confirmed that they are stored in the OTP mem-
ory. Also it was confirmed, that my firmware parsing tool actually parsed the firmware
and assigned the segments correctly.

Having the firmware and the memory layout now enables to create a modified firmware.
To create this firmware, Nexmon will be used. As a preparation the required functions
needs to be identified and mapped.

To exfiltrate the device credentials without opening the device and send them to a re-
mote server, some functions were required: bin2hex, snprintf and httpc_get. bin2hex
is necessary to convert the credentials, which are stored in binary format, into readable
hex representation. snprintf is used to build a string, like an Uniform Resource Lo-
cator (URL) with parameters. httpc_get makes the HTTP GET request using a given
URL. My idea was to use parameters in HTTP GET requests to exfiltrate the credential
information to my own webserver. The limitation here is that the device only supports
HTTP and not HTTPS.

To get the positions of the above functions, I compiled the examples with debug-
symbols from the Marvell SDK and used the IDA Pro plugin bindiff. I used it to match

13 https://GitHub.com/dgiese/dustcloud-documentation/blob/master/lumi.gateway.v3/serialconsole_

sample.log
14 https://GitHub.com/marvell-iot/ez-connect-lite/tree/master/sdk/tools/OpenOCD

https://GitHub.com/dgiese/dustcloud-documentation/blob/master/lumi.gateway.v3/serialconsole_sample.log
https://GitHub.com/dgiese/dustcloud-documentation/blob/master/lumi.gateway.v3/serialconsole_sample.log
https://GitHub.com/marvell-iot/ez-connect-lite/tree/master/sdk/tools/OpenOCD

56 evaluation of devices

Figure 18: Debug pins on PCB in Lumi Smart Home Gateway

the known functions in the firmware binary with the ones in the compiled examples.
Additionally I found compiled libraries of the miIO SDK in a GitHub repository15. The
libraries contained the debug symbols of the basic miIO functionality. After comparing
all available binaries and libraries with the gateway firmware using bindiff, I got many
matches, as can be seen in Figure 20.

With all the found functions, I created a patch which read the credentials out of the
memory and placed them as parameters in a HTTP GET request. I hooked this function
at the snprintf call in otu_timer_info. I have chosen otu_timer_info as this function
is called whenever a successful connection via UDP to the Mijia cloud is established.
There is also a TCP variant of this function which is called ott_timer_info. The UDP
function is tried at first and if it fails, then the TCP function is called. That way I can
control from outside whether my patch is executed by blocking or allowing the UDP
connection to the Mijia cloud. This is important in order to test the functionality of my
patch without permanently disabling the device. The patch and a modified version of
the Nexmon framework can be found in my "dustcloud-nexmon" repository16.

After I had all the information for my patched firmware, I created a binary with the
exfiltration function. I modified the version number in my firmware to represent an
older version in order to be able to trigger the update process from the "Xiaomi Home"
app over and over again. I placed the binary on my webserver and triggered the update
process. Due to my DNS redirection from before, the device downloaded and installed

15 https://GitHub.com/caoguanqiu/midir
16 https://GitHub.com/dgiese/dustcloud-nexmon/

https://GitHub.com/caoguanqiu/midir
https://GitHub.com/dgiese/dustcloud-nexmon/

5.2 device analysis 57

Figure 19: Placeholders for device credentials in firmware of Lumi Smart Home Gateway

my firmware. Shortly after that I received the credentials successfully.

The extracted credentials can be used to decrypt and modify the traffic between the
device and the Mijia cloud using Dustcloud. This is especially helpful if the vendor
Lumi implements HTTPS in the future or adds checks of the MD5 hash of the firmware.

In fact, Lumi implemented the MD5 hash verification in version "1.4.1_156", after I
presented some preliminary findings of this thesis in the DEF CON 26 IoT Village in
Summer 2018

17.
As a sidenote: While analyzing the firmware, I found a unknown communication to a

hardcoded IP address (166.70.53.160) located in Salt Lake City, USA. This was interesting
due the fact that the gateway was only sold on the Chinese market. After reporting this
to Xiaomi, Lumi responded that this was a remaining from some earlier experiments
with other customers. However, this remains were existing for a duration of 1.5 years in
the firmware.

5.2.5 Yeelight LED Strip

The Yeelight LED strip was released in Winter 2016 and was only marketed in mainland
Chinese. Later in 2018 Yeelight released an official US version of the LED strip. The
company Yeelight is one of the biggest members of the Xiaomi IoT ecosystem and also
produces the Chinese "Philips" branded light products.

Similar to Lumi, Yeelight offers a local API for their light products [62]. In addition
to the Xiaomi Home app support, Yeelight offers their own app for Android and iOS,
which offers additional features.

17 http://dontvacuum.me/talks/DEFCON26-IoT-Village/DEFCON26-IoT-Village_How_to_Modify_Cortex_M_

Firmware-Xiaomi.html

http://dontvacuum.me/talks/DEFCON26-IoT-Village/DEFCON26-IoT-Village_How_to_Modify_Cortex_M_Firmware-Xiaomi.html
http://dontvacuum.me/talks/DEFCON26-IoT-Village/DEFCON26-IoT-Village_How_to_Modify_Cortex_M_Firmware-Xiaomi.html

58 evaluation of devices

Figure 20: Matched functions between SDK libraries and unknown functions in firmware of
Lumi Smart Home Gateway

For the analysis I imported 3 LED strips from China, as by the time I analyzed the
hardware they were not available officially in Europe and US.

A first network scan revealed the miIO service on port 54321(udp). An analysis of the
traffic revealed, that similar to the Lumi Smart Home Gateway, the firmware updates
were not encrypted and instead transmitted in plain-text over HTTP. The router blocked
the download of the firmware to prevent the update. The device remained on the older
version.

A closer look at the received firmware "upd_yeelink.light.strip1.elf" (version 140.40,
MD5 hash: 301890243fa6aae4a67825988679785a) revealed that this devices is also based
on a Marvell MCU. The firmware was very similar to the firmware of the Lumi Smart
Home Gateway, even the placeholders for the device credentials were at the same place.

I reused the Nexmon environment and created a slightly different patch for this device
so that I could remap the interesting functions as they did not had the same addresses
as the Lumi Smart Home gateway. I could use the tool Bindiff again and compared
it against the firmware I created for the Lumi device. After successfully building a
custom firmware image, I repeated the same steps as for the Lumi Smart Home gateway
and got the same result. The DNS redirection worked and even though my custom
firmware image had a different MD5 hash it was still successfully installed. This meant
that the firmware verification was also not implemented in this device. After installing
my firmware, I extracted the device credentials and could now connect the device to
Dustcloud.

Due to a mistake in rewriting another patch, the device became unresponsive. There-
fore I needed to open the device. Compared with the other devices, this device was
harder to open as part of the case was glued and additionally plastic clips were used. In
the end I was able to open the device, however this left some scratches and bent plastic.

5.2 device analysis 59

Figure 21 shows the disassembled device. By probing the same pins as for the Lumi
device, I got access on the SWD and could overwrite the firmware with the original one.
While the device has 2 copies of the OS there is no procedure to do a factory reset to a
non-broken OS. While looking for SWD, I found also the UART pins. It turned out that
this device is using the Marvell 88MW300 MCU instead of the 88MW302. However, the
only difference is the additional USB support of the 88MW302, otherwise these chips
are compatible with regard to the software. Also, the LED Strip has only 4 MByte SPI
flash in comparison to the 16 MByte of the Lumi Smart Home gateway.

The latest version I have from this device is version "1.4.2_0044", which was released
in Spring 2018. Therefore this version does not have a fixed firmware verification.

Figure 21: Front side of the PCB in disassembled Yeelight LED Strip

5.2.6 Yeelight Smart Light bulbs

There are many different variations of Yeelight Smart Light bulbs. The first ones were
released in Winter 2016 together with some other Yeelight products. Like the other
products, their primary target market was mainland China.

For this analysis I used the Yeelight Mono Light Bulb. My first assumption was, that
Yeelight is using the same platform for all their lighting products. Therefore I directly
tried to trigger the firmware update and intercepted the firmware binary. I received the
file "upd_yeelink.light.mono1.bin" (version 1.4.2_0055, MD5 hash: ffa341cf1e00bbc1ebca4470f64dc5cb).
The firmware binary was again a Marvell firmware. I again used Bindiff to map the
functions. This time I could match the firmware with the one of the Yeelight LED Strip.

60 evaluation of devices

After creating a custom firmware with Nexmon, I could successfully install it on the
device and extract the device credentials.

To get an impression of the inside of the Light bulb, I tied do disassemble it and to
get access to the PCB. While part of the device came apart, for the rest I needed to use a
saw and a rotating tool in order to open it. The result is shown in Figure 22. The light is,
in that state, not repairable or functional anymore. That means that accessing the debug
pins is difficult, if not even impossible, without total destruction of the device.

Figure 22: Disassembled Yeelight Smart Lightbulb

5.2.7 Lumi Aqara Gateway Camera

Towards the end of 2017 Lumi started their new brand "Aqara". As part of the new
product series the Aqara Gateway camera was released. This devices combines the func-
tion of a surveillance camera with the functionality of the Lumi Smart Home gateway.
However, in contrast to the original Smart Home gateway, the Aqara Gateway camera
does not support the local API functionality.

At first, the device was scanned for open ports. Surprisingly a telnet server was lis-
tening on port 23(tcp). However, a login was not possible, as the username and password
were unknown. Additionally, as expected, the miIO service was on port 54321(udp). The
intercepted network traffic showed that the firmware is again transmitted over plaintext
Hypertext Transfer Protocol (HTTP). However this time the device seems to verify the
firmware, therefore the DNS redirection method was not successful.

An analysis of the intercepted firmware update with binwalk showed a squashfs

filesystem. However it contained only the application files, not a copy of the OS. In or-

5.2 device analysis 61

der to obtain telnet access, it was necessary to disassemble the device and to unsolder
the flash. Figure 23 shows the camera disassembled and the position of the UART pins.
It was found that the camera uses a Hi3518-variant SOC and a 16 MByte SPI flash.

The information about the disassembly and the datasheets can be found on GitHub
in my dustcloud-documentation repository18.

Figure 23: Disassembled Aqara Gateway Camera with Back-(left) and Frontside PCB (right)

After the SPI flash was unsoldered, it was imaged using the FlashcatUSB reader. The
partitions on the flash can be found in Table 10. On the OS partition the shadow file was
found. The developer of the camera used the SDK delivered with the Hi3518 SOC. The
root password was encrypted using DEScrypt, which is highly insecure and shortens the
password down to 8 characters. Using hashcat in combination with a NVIDIA Geforce
1080 graphics card, it was possible to brute-force the password. The resulting password
was "lumi-201", however it is assumed that the original password was longer. Using this
password the access via telnet was possible and the system could be modified.

After further analysis of the flash image, I found improperly deleted device creden-
tials of the Lumi developers on the Userdata partition. This partition is using JFFS2

as the filesystem. JFFS2 is a flash optimized filesystem which does not delete files im-
mediately, instead the "Garbarge collector" removes them if necessary. The idea here
is to avoid unnecessary writes on the flash [34]. However, this leads to the problem
that deleted information is still present when, for example, the device is reset to factory
settings.

The very interesting aspect of this device is, that the actual OS cannot be updated,
as only one copy of it exists and its filesystem is also read-only. Instead, only the App
partition can be changed via a firmware update. After I reported the vendor the flaw,
Lumi released a firmware update in Fall 2018 where telnet server is being shutdown

18 https://github.com/dgiese/dustcloud-documentation/tree/master/lumi.camera.aq1

https://github.com/dgiese/dustcloud-documentation/tree/master/lumi.camera.aq1

62 evaluation of devices

Partition Usage Filesystem Size

mtdblock0 U-Boot bootloader binary 256 KByte

mtdblock1 cmdline binary 128 KByte

mtdblock2 Kernel binary 1792 KByte

mtdblock3 OS squashfs 6 MByte

mtdblock4 App0 squashfs 3 MByte

mtdblock5 App1 squashfs 3 MByte

mtdblock6 Userdata JFFS2 1920 KByte

Table 10: Partitions on SPI flash of Aqara Gateway camera

after a few seconds by the software. Additionally the "/etc/shadow" file is replaced
with a different version. However, here the vendor repeated the same mistake again and
used DEScrypt for the password hashing. Therefore, I could also brute-force the new
password.

5.3 analysis results

The hardware specifications I found in the previous reverse engineering can be found in
Table 11. This table contains more devices that are mentioned in the previous sections
due to the fact that many devices have a very similar behaviour and I wanted to give a
broader overview for reasons of comparison. An assessment of security related features
can be found in Table 12. Here the state of the security features is defined as of the
moment of the initial analysis. Changes are mentioned in the corresponding footnotes.

Regarding the tables, it is evident that especially the Cortex-M based devices lack
HTTPS or have HTTPS improperly implemented. Also, the Cortex-M based devices
are often even lacking the verification of the firmware. It is assumed that this step
was missing in a particular version of the SDK and was added as soon as some of my
research was presented. All of the analyzed devices have at least one debug interface.

5.4 possible attacks

In this section I discuss possible attacks and threats on Xiaomi IoT devices using the
information I got from the previous analysis.

In this chapter many security flaws of the device have been found. All, with excep-
tion of the open telnet service on the Aqara Camera, are not trivially abusable. One
reason is, that the devices have been designed primarily for the usage in the Mijia Cloud
ecosystem in mind. Therefore usual attack vectors, like web-interfaces, are missing. As
these devices do not offer any direct interface, it does not make sense for the user to
make them directly reachable from the Internet.

However, it does not mean that the devices are not attackable. In the unprovisioned
state, everyone can connect to the devices as they are providing an open WLAN access-

5.4 possible attacks 63

Device name SOC Cores OS RAM Flash

Aqara Gateway (Homekit) NXP i.MX6ULL ARM-Cortex A7 Yocto 256M 256M

Aqara Smart Home Gateway NXP i.MX6ULL ARM-Cortex A7 Yocto 256M 256M

Aqara Smart IP Camera Hi3518EV200 ARM-Cortex A9 Linux 64M 16M

Lumi Smart Home Gateway Marvell 88MW302 ARM Cortex M4F RTOS 512K 16M

Philips Ceiling Lamp Mediatek MT7697N ARM Cortex M4F Yeelight 352K 4M

Roborock S50 Allwinner R16 4x ARM Cortex A Ubuntu 14.04 512M 4G

Roborock S6/T61 Allwinner R16 4x ARM Cortex A Ubuntu 14.04 512M 4G

Xiaomi Mi Vacuum Robot Allwinner R16 4x ARM Cortex A Ubuntu 14.04 512M 4G

Xiaomi Mi WiFi Speaker Amlogic-meson3 ARM Cortex A9 OpenWRT 128M 8G

Xiaomi WiFi Plug Marvell 88MW300 ARM Cortex M4F RTOS 512K 4M

Yeelink Bedside lamp Mediatek MT7697N ARM Cortex M4F RTOS 352K 4M

Yeelink Ceiling Lamp Mediatek MT7697N ARM Cortex M4F RTOS 352K 4M

Yeelink Light Color Marvell 88MW300 ARM Cortex M4F RTOS 512K 4M

Yeelink Light Mono1 Marvell 88MW300 ARM Cortex M4F RTOS 512K 4M

Yeelink Light Strip Marvell 88MW300 ARM Cortex M4F RTOS 512K 4M

Yeelink Smart White Bulb Marvell 88MW300 ARM Cortex M4F RTOS 512K 4M

Yeelink Smart RGB Bulb Marvell 88MW300 ARM Cortex M4F RTOS 512K 4M

Table 11: Hardware details of the analyzed devices

point for configuration purposes. A malicious party could connect to the device in
that state and flash a malicious firmware update. Nonetheless, as soon as a device is
correctly provisioned, there are no trivial usable vulnerabilities, as the devices do not
accept any command without the correct encryption by the token. This token is usually
only known to the smart-phone of the owner.

Also my original planned attack using a malicious app, similar to Sivaraman et al. [51],
does not make sense in this setting. But, in one scenario it is possible to attack the IoT
devices in the local network: In case of a malicious application with root permissions
on the owner’s phone, it is possible to extract the tokens from the "Xiaomi Home" app
and then attack the local devices.

The higher risk of attacks comes directly from the cloud. If there are unknown vulner-
abilities in the Mijia cloud backend, then a huge amount of devices would be directly af-
fected. This is especially critical for the Mijia cloud, as here the cloud can push firmware
updates remotely on the devices.

64 evaluation of devices

Debug Interfaces Firmware Network Physical Data

Device name U
A

R
T

JT
A

G
/S

W
D

Te
ln

et
/S

SH

En
cr

yp
te

d

Si
gn

ed

V
er

ifi
ed

H
T

T
PS

C
er

ti
fic

at
e

ch
ec

ke
d

Ta
m

pe
r

re
si

st
an

t

Ta
m

pe
r

ev
id

en
t

U
se

r
da

ta
no

t
on

de
vi

ce

se
cu

re
un

pr
ov

is
io

ni
ng

Aqara Gateway (Homekit) ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗

Aqara Smart Home Gateway ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗

Aqara Smart IP Camera ✓1 ✗ ✓2 ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Lumi Smart Home Gateway ✓ ✓ ✗ ✗ ✗ ✗3 ✗ ✗ ✗ ✓ ✓ ✓

Philips Ceiling Lamp ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓

Roborock S50 ✓ ✓4 ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗5

Roborock S6/T61 ✓ ✓4 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓6

Xiaomi Mi Vacuum Robot ✓ ✓4 ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗5

Xiaomi Mi WiFi Speaker ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Xiaomi WiFi Plug ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Yeelink Bedside lamp ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Yeelink Ceiling Lamp ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Yeelink Light Color ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Yeelink Light Mono1 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Yeelink Light Strip ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Yeelink Smart White Bulb ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Yeelink Smart RGB Bulb ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Table 12: Security details of the analyzed devices
1 0 Ohm resistors are missing
2 disabled in later versions
3 verification added in later versions
4 blocked by iptables
5 formatting of the data partition introduced in later versions
6 data partition is formatted, however data partly restorable

Part III

D I S C U S S I O N A N D C O N C L U S I O N S

This chapter contains a discussion of the presented results as well as an
overview of the future work. In addition, I finish this work with conclusions.

6
D I S C U S S I O N

In this chapter I take a critical look at the results of my work. Section 6.1 discusses
approaches used to reverse engineer the ecosystems. The results are discussed in Section
6.2. In Section 6.3 I discuss the results in relation to custom firmware. I conclude with a
discussion of possible future work in Section 6.4.

6.1 the used approaches for reverse engineering

The primary targets of my research were vacuum cleaning robots. The reason for this
was based on the fact that these devices have much computational power for a vacuum
cleaner and run a Linux Operating System (OS), which is, in comparison to a bare-metal
OS, easier to understand and root access is more useful.

I collected the firmware updates for various devices, until I had a collection which
spans over the time-frame of 2 years or even more , per device. This enabled me to track
changes of new versions. This was also helpful in order to understand when which
security measures and patches had been introduced.

Traditionally, the analysis of binary firmware requires a lot of experience and special
tools like IDA Pro [28]. However, with the availability of automated tools and the pub-
lication of Ghidra [17], the entry level for such analysis is lowered. Still, in this thesis
I mostly used the manual approach due to the lack of experience and overview in the
field. However, with the gained knowledge from this research, I would do the analysis
more efficiently next time.

The methods I used for my analysis are mostly low-cost and are already used in differ-
ent contexts. Many of the laborious approaches can be avoided, if one has the experience
and expertise for reliably desoldering and resoldering Ball Grid Array (BGA) chips. It
has shown, that the firmware extraction from the flash chip was the most successful
method to retrieve the firmware and potential other usual information, such as keys or
factory tools. Also, my financial restriction led me to avoid potentially destroying the
devices, which increased time consumption for the research. For a researcher without
these restrictions the analysis of an Internet of Things (IoT) ecosystem is simpler and
less time consuming. My assumption is, that for a malicious attacker the same would
apply.

Still, my approaches have been successful and the number of permanently damaged
devices was limited to Light bulbs and one Aqara camera. However I believe I will
use more automated tools, like Firmware Analysis and Comparison Tool (FACT), in the
future in order to create a more efficient workflow.

67

68 discussion

6.2 security of the xiaomi ecosystem

After the analysis of the IoT devices, it became apparent that security engineering is not
the top priority of the device vendors. All the Real-Time Operating System (RTOS) based
devices had the same vulnerabilities. Some of the vendors released patched firmware,
however only after the vulnerabilities had been reported. Also only the reported vulner-
abilities have been closed.

The usage of the same Software Development Kit (SDK) leads to the problem that
the same vulnerability can be present in a whole set of devices. In the case of the Mijia
ecosystem, three vendors used mostly the same firmware, without custom modifications
in regard to security. This shows a huge belief in the ability of the ecosystem provider
to develop a secure SDK, which leads to a false security. Also one explanation could be
that the developers are under pressure to develop a product as fast as possible. As long
as no security incident is happening, the vendors do not see the necessity to improve
security.

One extreme example of fixing flaws is the earlier shown case of the Aqara Camera.
The camera runs an open telnet server and the password is hardcoded. The password
itself is stored using the insecure hashing algorithm DEScrypt. After the report to the
vendor, the developers did exactly the same mistake again and stored the new password
using DEScrypt again. While at least this time the telnet server was disabled, it showed
that the actual issue was not addressed. In case of the Aqara Camera, it is assumed
that the SDK of the chip manufacturer was reused. The exact same SDK was part of the
problem while the outbreak of the Mirai botnet [7].

In regard to the Linux based devices, many aspects are similar to the RTOS devices.
One interesting observation is, that the logic of the Mijia SDK is slightly different be-
tween the platforms. For example the Linux based SDK verifies the MD5 hash of the
firmware file, but does not differentiate between commands issued via the local Applica-
tion Programming Interface (API) (using the token) and via the cloud API. This enabled
the installation of custom firmware on all Linux based devices. In contrast to that, all the
RTOS based firmware did not accept specific commands via the local API. Instead they
did not verify the firmware MD5 hash. This could imply that the SDKs were developed
by different teams.

Another interesting observation was that the cloud protocol had design flaws. In
Section 3.3, I mentioned that the Microcontroller Unit (MCU) updates do not have an
integrity checking method in form of an MD5 hash. In combination with the, earlier
mentioned, missing verification of the System-on-a-Chip (SOC) firmware integrity, this
observation is worrisome as firmwares can modified using Man-in-the-middle (MITM)
attacks. This is possible for devices which download firmware via Hypertext Transfer
Protocol (HTTP) or do not verify Hypertext Transfer Protocol Secure (HTTPS) certificates
correctly.

For a large IoT company like Xiaomi these kind of flaws should not be acceptable.
However, if such a company has such flaws, one can make an assumption about how

6.3 possibility of custom firmware 69

many flaws less known IoT vendors have, as they have potentially less resources or
interest to fix it.

In regard of the security, companies started to react. For example, Roborock started
to close down flaws in their devices after me reporting issues and they got knowledge
about it. All new models are not vulnerable anymore to the old attacks. In contrast to
that, there are vendors who were aware of a vulnerability and did not properly close it
over a long time.

One advantage of the Xiaomi ecosystem is that they are not meant for the direct user
interaction. This means that they do not have the typical interfaces, like user-accessible
webservers or APIs, which are most of the time the weakspot of IoT devices.

6.3 possibility of custom firmware

There are many open-source smart home software with huge communities, like home-
assistant1 or FHEM2. Many user want to gain control over their smart home devices and
control them independently from the vendor. This wish was also the reason what had
driven me to do the research in this thesis.

While security flaws in IoT devices are usually considered bad, they are good out of
the perspective of users who want to modify their devices. If the vendor does not offer
an open interface to control a device, then modification of the devices might be the only
alternative. An example here is the Wink Hub, which got rooted by many users and
where a community was developed [46]. Additionally, modification of devices enables
the user to add additional features to the device, for example, if the vendor stopped the
support with functional updates, like happened with Roborock and the older versions
of the vacuum cleaning robots.

Not all of the analyzed devices are equally suitable to be rooted. While it is possible
to develop custom firmware for the Cortex-M based devices using Nexmon, it is too
complicated for the average user. Tools like Dustcloud, which was mainly developed
for this thesis, are suitable for power users or developers. Especially in the case of
Dustcloud, it is important to know that it is not meant as a reliable solution for end-
users. However, one specific set of the analyzed devices is also suitable for the average
user: vacuum cleaning robots. The released tools in the Dustcloud suite enable users
to create custom firmware and get Secure SHell (SSH) on their own vacuum cleaning
robot. As a result of the research done in this thesis custom software for the control
of the vacuum cleaning robots was developed. One example is valetudo which works
autonomously on the vacuum cleaner and offers all the features of the "Xiaomi Home"
app [27]. To simplify the creation of custom firmware for the vacuum cleaning robots, I
created a public service3 which creates images automatically.

1 https://community.home-assistant.io/
2 https://forum.fhem.de/
3 http://dustbuilder.dontvacuum.me

https://community.home-assistant.io/
https://forum.fhem.de/
http://dustbuilder.dontvacuum.me

70 discussion

6.4 future work

With every time I published rooting methods, some vendors reacted with closing down
this ways. In particular, the Roborock vacuum robots became more and more locked
down. Recently the company released the Xiaomi Mi Robot M1S, which does have a
camera as an additional sensor. This device makes use or ARM TrustZone, encrypt its
flash contents and uses a memory protection feature of the SOC in order to scramble the
contents of the memory. The reverse engineering of this device would be difficult using
only the methods presented in this work. However, as it is part of the Xiaomi ecosys-
tem and likely Roborock reused part of the software, many learned information in this
study could be potentially useful for the analysis of these new devices. Interestingly, the
company told me, that the changes are a direct reaction on my research.

Also, due to the grow of the ecosystem, a shifted focus on other members of the
ecosystem might be helpful. Especially the company "Viomi" releases very similar prod-
ucts like Roborock in the recent time. It could be interesting to compare two devices
with the same features in the same ecosystem.

7
C O N C L U S I O N S

Large Internet of Things (IoT) ecosystems, which are operated by huge companies, are
not automatically secure. However, due to the structure of the ecosystem, most of the
flaws are not usable for mass-attacks in any users. In this research, I studied the security
of the Xiaomi IoT ecosystem. In particular, my focus was on the security of the devices
in the ecosystem. First I introduced the technical background with IoT devices as part
of embedded systems. Then I discuss the requirements for an secure IoT system. I
presented my approach to analyze the ecosystem. I introduced the structure and the
corresponding Application Programming Interface (API) of Xiaomi’s Mijia ecosystem. I
built tools to parse firmware files. Also, I got a better understanding about the cloud
protocol by developing a tool which proxied the cloud communication. Next I discussed
different methods for the reverse engineering of the device, in particular based on net-
work, on hardware, and on software. I defined criteria of interest for the following
analysis and used the previously discussed methods to successfully attack the devices.
For all devices there was a found to get root access or some other form of privileged
access, like a modified bare-metal Operating System (OS). I published my findings, doc-
umentation, and tools on my GitHub repositories. Now other researchers can use the
information for their research, possibly to analyze any kind of IoT or embedded device.
In addition, users of the Xiaomi IoT ecosystem can modify their devices and hence de-
cide for themselves if they want to opt-out from Xiaomi acting as their cloud provider
or not.
The methods and tools developed in this thesis can be used to reverse engineer other
Xiaomi ecosystem devices. This especially applies to the firmware parsing tools and the
modified version of the Nexmon framework. However the use-case is not restricted to
the Xiaomi ecosystem. Instead the methods can be used to analyze any kind of IoT or
embedded device.

71

B I B L I O G R A P H Y

[1] 88MW300/302WLAN Microcontroller Datasheet. v2.0. Marvell. May 2016.

[2] Lady Ada. “Programming Microcontrollers using OpenOCD on a Raspberry Pi.”
In: Adafruit Learning System (Mar. 2016). url: https://learn.adafruit.com/
programming-microcontrollers-using-openocd-on-raspberry-pi.

[3] After crossing RMB 100B revenue milestone, a new journey for Xiaomi begins in 2018.
Feb. 2018. url: http://blog.mi.com/en/2018/02/07/after-crossing-rmb-100b-
revenue-milestone-a-new-journey-for-xiaomi-begins-in-2018/.

[4] Alexa, are you listening? [Online; accessed 4. Jul. 2019]. Aug. 2017. url: https :

//labs.mwrinfosecurity.com/blog/alexa-are-you-listening.

[5] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. “Sok: Secu-
rity evaluation of home-based iot deployments.” In: Proceedings of the IEEE Sympo-
sium on Security and Privacy (S&P). https://doi. org/10.1109/SP. 2019.

[6] Anonymous. Internet Census 2012: Port scanning/0 using insecure embedded devices.
[Online archived; accessed 02. Jun. 2019]. 2013. url: https://web.archive.org/
web/20151013010243/http://internetcensus2012.bitbucket.org/paper.html.

[7] Manos Antonakakis et al. “Understanding the Mirai Botnet.” In: 26th USENIX
Security Symposium (USENIX Security 17). Vancouver, BC: USENIX Association,
2017, pp. 1093–1110. isbn: 978-1-931971-40-9. url: https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/antonakakis.

[8] Harald Bauer, Mark Patel, and Jan Veira. Tech. rep.

[9] Buyer Beware: Used Nest Cams Can Let People Spy on You. [Online; accessed 3. Jul.
2019]. June 2019. url: https://thewirecutter.com/blog/used-nest-cams-can-
let-people-spy-on-you.

[10] Consumer Technology Association (CTA). CTA Consumer Technology Ownership and
Market Potential Report. 2017.

[11] Choosing the Right NAND. [Online; accessed 4. Jul. 2019]. url: https://www.micron.
com/products/nand-flash/choosing-the-right-nand.

[12] Adam Cooper. IEI REPORT Electric Company Smart Meter Deployments: Foundation
for A Smart Grid. Tech. rep. The Edison Foundation, Oct. 2016, p. 2.

[13] Cr1ptT0r Ransomware Targeting NAS | D-Link. [Online; accessed 02. Jun. 2019]. Mar.
2019. url: https://www.dlink.com/en/security-bulletin/cr1ptt0r-ransomware-
targeting-nas.

[14] EliasKotlyar/Xiaomi-Dafang-Hacks. [Online; accessed 4. Jul. 2019]. June 2019. url:
https://github.com/EliasKotlyar/Xiaomi-Dafang-Hacks/blob/master/README.

md.

[15] English manual · Issue #4 · louisZL/lumi-gateway-local-api. [Online; accessed 4. Jul.
2019]. June 2017. url: https://github.com/louisZL/lumi-gateway-local-api.

73

https://learn.adafruit.com/programming-microcontrollers-using-openocd-on-raspberry-pi
https://learn.adafruit.com/programming-microcontrollers-using-openocd-on-raspberry-pi
http://blog.mi.com/en/2018/02/07/after-crossing-rmb-100b-revenue-milestone-a-new-journey-for-xiaomi-begins-in-2018/
http://blog.mi.com/en/2018/02/07/after-crossing-rmb-100b-revenue-milestone-a-new-journey-for-xiaomi-begins-in-2018/
https://labs.mwrinfosecurity.com/blog/alexa-are-you-listening
https://labs.mwrinfosecurity.com/blog/alexa-are-you-listening
https://web.archive.org/web/20151013010243/http://internetcensus2012.bitbucket.org/paper.html
https://web.archive.org/web/20151013010243/http://internetcensus2012.bitbucket.org/paper.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://thewirecutter.com/blog/used-nest-cams-can-let-people-spy-on-you
https://thewirecutter.com/blog/used-nest-cams-can-let-people-spy-on-you
https://www.micron.com/products/nand-flash/choosing-the-right-nand
https://www.micron.com/products/nand-flash/choosing-the-right-nand
https://www.dlink.com/en/security-bulletin/cr1ptt0r-ransomware-targeting-nas
https://www.dlink.com/en/security-bulletin/cr1ptt0r-ransomware-targeting-nas
https://github.com/EliasKotlyar/Xiaomi-Dafang-Hacks/blob/master/README.md
https://github.com/EliasKotlyar/Xiaomi-Dafang-Hacks/blob/master/README.md
https://github.com/louisZL/lumi-gateway-local-api

74 Bibliography

[16] FEL - linux-sunxi.org. [Online; accessed 29. May 2019]. Mar. 2018. url: https://
linux-sunxi.org/FEL.

[17] Ghidra. [Online; accessed 9. Jul. 2019]. Apr. 2019. url: https://www.nsa.gov/
resources/everyone/ghidra.

[18] M. Ghiglieri and E. Tews. “A privacy protection system for HbbTV in Smart TVs.”
In: 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC).
Jan. 2014, pp. 357–362. doi: 10.1109/CCNC.2014.6866595.

[19] A. Gilchrist. IoT Security Issues. De Gruyter, Incorporated, 2017. isbn: 9781501505775.
url: https://books.google.com/books?id=xipDDgAAQBAJ.

[20] Vivek Gite. 10 boot time parameters you should know about the Linux kernel. [Online;
accessed 29. May 2019]. Mar. 2006. url: https://www.cyberciti.biz/tips/10-
boot-time-parameters-you-should-know-about-the-linux-kernel.html.

[21] Global Smartphone Shipments Down 6.0% in Q3 2018 as the Leading Vendor and the
Largest Market Face Challenges, According to IDC. 2018. url: https://www.idc.com/
getdoc.jsp?containerId=prUS44425818.

[22] J Grand. “JTAGulator: assisted discovery of on-chip debug interfaces.” In: DEF-
CON 21, Las Vegas. 2013.

[23] Mordechai Guri, Yosef Solewicz, Andrey Daidakulov, and Yuval Elovici. “SPEAKE(a)R:
Turn Speakers to Microphones for Fun and Profit.” In: 11th USENIX Workshop on
Offensive Technologies (WOOT 17). Vancouver, BC: USENIX Association, 2017. url:
https://www.usenix.org/conference/woot17/workshop-program/presentation/

guri.

[24] Dick Hardt. The OAuth 2.0 Authorization Framework. [Online; accessed 4. Jul. 2019].
Oct. 2012. url: https://tools.ietf.org/html/rfc6749.

[25] M. Hermann, T. Pentek, and B. Otto. “Design Principles for Industrie 4.0 Scenar-
ios.” In: 2016 49th Hawaii International Conference on System Sciences (HICSS). Jan.
2016, pp. 3928–3937. doi: 10.1109/HICSS.2016.488.

[26] HomeHack: How Hackers Could Have Taken Control of LG’s IoT Home Appliances -
Check Point Software. [Online; accessed 20. Jun. 2019]. Oct. 2017. url: https://
blog.checkpoint.com/2017/10/26/homehack-how-hackers-could-have-taken-

control-of-lgs-iot-home-appliances.

[27] Hypfer/Valetudo. [Online; accessed 4. Jul. 2019]. June 2019. url: https://github.
com/Hypfer/Valetudo.

[28] IDA Debugger: Overview. [Online; accessed 9. Jul. 2019]. Feb. 2018. url: https:
//www.hex-rays.com/products/ida/debugger/index.shtml.

[29] “IEEE Standard for Information technology—Telecommunications and informa-
tion exchange between systems Local and metropolitan area networks—Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications.” In: IEEE Std 802.11-2016 (Revision of IEEE Std
802.11-2012) (Dec. 2016), pp. 1–3534. doi: 10.1109/IEEESTD.2016.7786995.

[30] “IEEE Standard for Low-Rate Wireless Networks.” In: IEEE Std 802.15.4-2015 (Re-
vision of IEEE Std 802.15.4-2011) (Apr. 2016), pp. 1–709. doi: 10.1109/IEEESTD.
2016.7460875.

https://linux-sunxi.org/FEL
https://linux-sunxi.org/FEL
https://www.nsa.gov/resources/everyone/ghidra
https://www.nsa.gov/resources/everyone/ghidra
https://doi.org/10.1109/CCNC.2014.6866595
https://books.google.com/books?id=xipDDgAAQBAJ
https://www.cyberciti.biz/tips/10-boot-time-parameters-you-should-know-about-the-linux-kernel.html
https://www.cyberciti.biz/tips/10-boot-time-parameters-you-should-know-about-the-linux-kernel.html
https://www.idc.com/getdoc.jsp?containerId=prUS44425818
https://www.idc.com/getdoc.jsp?containerId=prUS44425818
https://www.usenix.org/conference/woot17/workshop-program/presentation/guri
https://www.usenix.org/conference/woot17/workshop-program/presentation/guri
https://tools.ietf.org/html/rfc6749
https://doi.org/10.1109/HICSS.2016.488
https://blog.checkpoint.com/2017/10/26/homehack-how-hackers-could-have-taken-control-of-lgs-iot-home-appliances
https://blog.checkpoint.com/2017/10/26/homehack-how-hackers-could-have-taken-control-of-lgs-iot-home-appliances
https://blog.checkpoint.com/2017/10/26/homehack-how-hackers-could-have-taken-control-of-lgs-iot-home-appliances
https://github.com/Hypfer/Valetudo
https://github.com/Hypfer/Valetudo
https://www.hex-rays.com/products/ida/debugger/index.shtml
https://www.hex-rays.com/products/ida/debugger/index.shtml
https://doi.org/10.1109/IEEESTD.2016.7786995
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/IEEESTD.2016.7460875

Bibliography 75

[31] ITU-T Y.2060 Overview of the Internet of things. July 2012. url: http://handle.itu.
int/11.1002/1000/11559.

[32] IoT Security: Physical Layer Security for IoT PCBs. [Online; accessed 29. May 2019].
May 2017. url: https://resources.altium.com/pcb-design-blog/iot-security-
internet-of-things-pcbs.

[33] IoT Testing Guides - OWASP. [Online; accessed 20. Jun. 2019]. May 2016. url: https:
//www.owasp.org/index.php/IoT_Testing_Guides.

[34] JFFS2. [Online; accessed 8. Jul. 2019]. Oct. 2001. url: http://sourceware.org/
jffs2/jffs2-html/node3.html.

[35] M. Kitano, A. Nishimura, S. Kawai, and K. Nishi. “Analysis of package cracking
during reflow soldering process.” In: 26th Annual Proceedings Reliability Physics
Symposium 1988. Apr. 1988, pp. 90–95. doi: 10.1109/RELPHY.1988.23432.

[36] A. Marzano, D. Alexander, O. Fonseca, E. Fazzion, C. Hoepers, K. Steding-Jessen,
M. H. P. C. Chaves, Í. Cunha, D. Guedes, and W. Meira. “The Evolution of Bashlite
and Mirai IoT Botnets.” In: 2018 IEEE Symposium on Computers and Communications
(ISCC). June 2018, pp. 00813–00818. doi: 10.1109/ISCC.2018.8538636.

[37] Mi Robot vacuum • Robot Reviews. [Online; accessed 2. Jul. 2019]. Feb. 2017. url:
http://www.robotreviews.com/chat/viewtopic.php?f=6&t=19479&start=220.

[38] Nintendo NES Classic Edition - linux-sunxi.org. [Online; accessed 02. Jun. 2019]. Apr.
2019. url: https://linux-sunxi.org/Nintendo_NES_Classic_Edition.

[39] OWASP Embedded Application Security - OWASP. [Online; accessed 17. Jun. 2019].
Nov. 2018. url: https://www.owasp.org/index.php/OWASP_Embedded_Application_
Security#tab=Embedded_Top_10_Best_Practices.

[40] R16 Datasheet. v1.4. Allwinner. June 2016.

[41] R16 User Manual. v1.2. Allwinner. Jan. 2016.

[42] Radio Versions | Bluetooth Technology Website. [Online; accessed 4. Jul. 2019]. June
2019. url: https://www.bluetooth.com/bluetooth-technology/radio-versions.

[43] RaspberryPi - flashrom. [Online; accessed 4. Jul. 2019]. Jan. 2018. url: https://www.
flashrom.org/RaspberryPi.

[44] Fred Raynal. Flash Dumping - Part I. [Online; accessed 4. Jul. 2019]. Sept. 2017. url:
https://blog.quarkslab.com/flash-dumping-part-i.html.

[45] Rockusb - Rockchip open source Document. [Online; accessed 2. Jul. 2019]. July 2018.
url: http://opensource.rock-chips.com/wiki_Rockusb.

[46] Root Your Hub - Wink@Home Wiki. [Online; accessed 3. Jul. 2019]. Oct. 2015. url:
https://wiki.winkathome.net/Root_Your_Hub.

[47] SDIO at Raspberry Pi GPIO Pinout. [Online; accessed 9. Jul. 2019]. url: https :

//pinout.xyz/pinout/sdio#.

[48] SYS.4.4 Allgemeines IoT-Gerät. Tech. rep. Bundesamt für Sicherheit in der Informa-
tionstechnik, 2018. url: https://www.bsi.bund.de/DE/Themen/ITGrundschutz/
ITGrundschutzKompendium/bausteine/SYS/SYS_4_4_Allgemeines_IoT-GerÃd’t.

html.

http://handle.itu.int/11.1002/1000/11559
http://handle.itu.int/11.1002/1000/11559
https://resources.altium.com/pcb-design-blog/iot-security-internet-of-things-pcbs
https://resources.altium.com/pcb-design-blog/iot-security-internet-of-things-pcbs
https://www.owasp.org/index.php/IoT_Testing_Guides
https://www.owasp.org/index.php/IoT_Testing_Guides
http://sourceware.org/jffs2/jffs2-html/node3.html
http://sourceware.org/jffs2/jffs2-html/node3.html
https://doi.org/10.1109/RELPHY.1988.23432
https://doi.org/10.1109/ISCC.2018.8538636
http://www.robotreviews.com/chat/viewtopic.php?f=6&t=19479&start=220
https://linux-sunxi.org/Nintendo_NES_Classic_Edition
https://www.owasp.org/index.php/OWASP_Embedded_Application_Security#tab=Embedded_Top_10_Best_Practices
https://www.owasp.org/index.php/OWASP_Embedded_Application_Security#tab=Embedded_Top_10_Best_Practices
https://www.bluetooth.com/bluetooth-technology/radio-versions
https://www.flashrom.org/RaspberryPi
https://www.flashrom.org/RaspberryPi
https://blog.quarkslab.com/flash-dumping-part-i.html
http://opensource.rock-chips.com/wiki_Rockusb
https://wiki.winkathome.net/Root_Your_Hub
https://pinout.xyz/pinout/sdio#
https://pinout.xyz/pinout/sdio#
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKompendium/bausteine/SYS/SYS_4_4_Allgemeines_IoT-Gerät.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKompendium/bausteine/SYS/SYS_4_4_Allgemeines_IoT-Gerät.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKompendium/bausteine/SYS/SYS_4_4_Allgemeines_IoT-Gerät.html

76 Bibliography

[49] Matthias Schulz, Daniel Wegemer, and Matthias Hollick. Nexmon: The C-based
Firmware Patching Framework. 2017. url: https://nexmon.org.

[50] O. Shwartz, Y. Mathov, M. Bohadana, Y. Elovici, and Y. Oren. “Reverse Engineer-
ing IoT Devices: Effective Techniques and Methods.” In: IEEE Internet of Things
Journal 5.6 (Dec. 2018), pp. 4965–4976. issn: 2327-4662. doi: 10.1109/JIOT.2018.
2875240.

[51] Vijay Sivaraman, Dominic Chan, Dylan Earl, and Roksana Boreli. “Smart-Phones
Attacking Smart-Homes.” In: WISEC. 2016.

[52] Nick Statt. “Nest is permanently disabling the Revolv smart home hub.” In: Verge
(Apr. 2016). url: https://www.theverge.com/2016/4/4/11362928/google-nest-
revolv-shutdown-smart-home-products.

[53] Synology. Important Information about Ransomware SynoLocker Threat. [Online; ac-
cessed 02. Jun. 2019]. Aug. 2014. url: https://www.synology.com/en-global/
security/advisory/SynoLocker.

[54] The Linux Watchdog driver API. [Online; accessed 15. Jun. 2019]. May 2007. url:
https://www.kernel.org/doc/Documentation/watchdog/watchdog-api.txt.

[55] TheCrypt0/yi-hack-v4. [Online; accessed 4. Jul. 2019]. May 2019. url: https : / /

github.com/TheCrypt0/yi-hack-v4/blob/master/README.md.

[56] [U-Boot] change root password. [Online; accessed 29. May 2019]. May 2010. url:
https://lists.denx.de/pipermail/u-boot/2010-May/071166.html.

[57] “Vacuums in the Cloud: Analyzing Security in a Hardened IoT Ecosystem.” In:
13th USENIX Workshop on Offensive Technologies (WOOT 19). Santa Clara, CA: USENIX
Association, 2019. url: https://www.usenix.org/conference/woot19/presentation/
ullrich.

[58] Jeffrey Voas. NIST Special Publication 800-183: Network of ’Things’. Tech. rep. Na-
tional Institute of Standards and Technology(NIST), 2016. doi: 10.6028/NIST.SP.
800-183.

[59] Xiaomi Gateway (Aqara) - Domoticz. [Online; accessed 4. Jul. 2019]. Mar. 2019. url:
https://www.domoticz.com/wiki/Xiaomi_Gateway_(Aqara).

[60] Xiaomi Unveils Their Very Own ESP32 Development Board, Module & SDK. [Online;
accessed 30. Jun. 2019]. Nov. 2017. url: https://www.cnx-software.com/2017/
11/28/xiaomi-esp32-development-board.

[61] Xiaomi and IKEA partner to bring smart connected homes to more users. Nov. 2018. url:
http://blog.mi.com/en/2018/11/28/news-xiaomi-and-ikea-partner-to-

bring-smart-connected-homes-to-more-users//.

[62] Yeelight. Developer Mode Yeelight. [Online; accessed 8. Jul. 2019]. url: https://www.
yeelight.com/en_US/developer.

[63] Zigbee and IEEE 802.15.4 wireless microcontroller with 512 kB Flash, 32 kB RAM | NXP.
[Online; accessed 4. Jul. 2019]. url: https://www.nxp.com/products/wireless/
proprietary- ieee- 802.15.4- based/zigbee- and- ieee802.15.4- wireless-

microcontroller-with-512-kb-flash-32-kb-ram:JN5169.

https://nexmon.org
https://doi.org/10.1109/JIOT.2018.2875240
https://doi.org/10.1109/JIOT.2018.2875240
https://www.theverge.com/2016/4/4/11362928/google-nest-revolv-shutdown-smart-home-products
https://www.theverge.com/2016/4/4/11362928/google-nest-revolv-shutdown-smart-home-products
https://www.synology.com/en-global/security/advisory/SynoLocker
https://www.synology.com/en-global/security/advisory/SynoLocker
https://www.kernel.org/doc/Documentation/watchdog/watchdog-api.txt
https://github.com/TheCrypt0/yi-hack-v4/blob/master/README.md
https://github.com/TheCrypt0/yi-hack-v4/blob/master/README.md
https://lists.denx.de/pipermail/u-boot/2010-May/071166.html
https://www.usenix.org/conference/woot19/presentation/ullrich
https://www.usenix.org/conference/woot19/presentation/ullrich
https://doi.org/10.6028/NIST.SP.800-183
https://doi.org/10.6028/NIST.SP.800-183
https://www.domoticz.com/wiki/Xiaomi_Gateway_(Aqara)
https://www.cnx-software.com/2017/11/28/xiaomi-esp32-development-board
https://www.cnx-software.com/2017/11/28/xiaomi-esp32-development-board
http://blog.mi.com/en/2018/11/28/news-xiaomi-and-ikea-partner-to-bring-smart-connected-homes-to-more-users//
http://blog.mi.com/en/2018/11/28/news-xiaomi-and-ikea-partner-to-bring-smart-connected-homes-to-more-users//
https://www.yeelight.com/en_US/developer
https://www.yeelight.com/en_US/developer
https://www.nxp.com/products/wireless/proprietary-ieee-802.15.4-based/zigbee-and-ieee802.15.4-wireless-microcontroller-with-512-kb-flash-32-kb-ram:JN5169
https://www.nxp.com/products/wireless/proprietary-ieee-802.15.4-based/zigbee-and-ieee802.15.4-wireless-microcontroller-with-512-kb-flash-32-kb-ram:JN5169
https://www.nxp.com/products/wireless/proprietary-ieee-802.15.4-based/zigbee-and-ieee802.15.4-wireless-microcontroller-with-512-kb-flash-32-kb-ram:JN5169

Bibliography 77

[64] aes.h File Reference - API Documentation - mbed TLS. [Online; accessed 1. Jun. 2019].
Mar. 2019. url: https://tls.mbed.org/api/aes_8h.html.

[65] fkie-cad/FACT_core. [Online; accessed 9. Jul. 2019]. June 2019. url: https://github.
com/fkie-cad/FACT_core.

[66] rampageX/firmware-mod-kit. [Online; accessed 9. Jul. 2019]. Mar. 2019. url: https:
//github.com/rampageX/firmware-mod-kit.

[67] rytilahti/python-miio. [Online; accessed 4. Jul. 2019]. July 2019. url: https://github.
com/rytilahti/python-miio.

[68] zynamics.com - BinDiff. [Online; accessed 4. Jul. 2019]. Apr. 2016. url: https://www.
zynamics.com/bindiff.html.

https://tls.mbed.org/api/aes_8h.html
https://github.com/fkie-cad/FACT_core
https://github.com/fkie-cad/FACT_core
https://github.com/rampageX/firmware-mod-kit
https://github.com/rampageX/firmware-mod-kit
https://github.com/rytilahti/python-miio
https://github.com/rytilahti/python-miio
https://www.zynamics.com/bindiff.html
https://www.zynamics.com/bindiff.html

T H E S I S S TAT E M E N T

pursuant to § 23 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I, Dennis Giese, have written the submitted Master
Thesis independently. I did not use any outside support except for the quoted literature
and other sources mentioned in the paper. I clearly marked and separately listed all
of the literature and all of the other sources which I employed when producing this
academic work, either literally or in content. This thesis has not been handed in or
published before in the same or similar form. I am aware, that in case of an attempt at
deception based on plagiarism (§ 38 Abs. 2 APB), the thesis would be graded with 5.0
and counted as one failed examination attempt. The thesis may only be repeated once.
In the submitted thesis the written copies and the electronic version for archiving are
identical in content.

E R K L Ä R U N G Z U R A B S C H L U S S A R B E I T

gemäß § 23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Dennis Giese, die vorliegende Master Thesis ohne Hilfe Dritter
und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stel-
len, die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese
Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
Mir ist bekannt, dass im Falle eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsver-
such verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden. Bei der
abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte elek-
tronische Fassung überein.

Boston, 10. Juli 2019

Dennis Giese

79

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	1 Introduction
	1.1 Motivation: IoT in our daily life
	1.2 Universal definition for IoT
	1.3 Security incidents
	1.4 Privacy concerns
	1.5 IoT devices as Embedded devices
	1.6 Requirements for a secure IoT system
	1.7 Secure devices vs. user control
	1.8 Focus on Xiaomi
	1.9 Scope of this Thesis

	2 Related Work

	Contributions
	3 Xiaomi Ecosystem
	3.1 Approach
	3.2 Structure
	3.3 Device API
	3.4 App to Cloud API
	3.5 Interception of cloud traffic: Dustcloud
	3.6 Devices

	4 Reverse Engineering Methods
	4.1 Network
	4.2 Hardware
	4.3 Software
	4.4 Summary of tools

	5 Evaluation of Devices
	5.1 Comparison guideline
	5.1.1 Hardware
	5.1.2 Firmware security
	5.1.3 Network
	5.1.4 Data

	5.2 Device analysis
	5.2.1 Xiaomi Mi Robot Vacuum Cleaner Gen1
	5.2.2 Roborock Vacuum Cleaner S50
	5.2.3 Roborock Vacuum Cleaner S6/T6
	5.2.4 Lumi Smart Home Gateway
	5.2.5 Yeelight LED Strip
	5.2.6 Yeelight Smart Light bulbs
	5.2.7 Lumi Aqara Gateway Camera

	5.3 Analysis results
	5.4 Possible Attacks

	Discussion and Conclusions
	6 Discussion
	6.1 The Used Approaches for Reverse Engineering
	6.2 Security of the Xiaomi Ecosystem
	6.3 Possibility of custom firmware
	6.4 Future work

	7 Conclusions
	Bibliography
	Thesis Statement
	Erklärung zur Abschlussarbeit

